Patent Production of Li from Industrial Brine

PDF Publication Title:

Patent Production of Li from Industrial Brine ( patent-production-li-from-industrial-brine )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 006

US 8,691,169B2 56 negative.Forexample,at20°C.AG=-21.4kcal;AG=- Theheatedpulp21at70to100°C.isthensubjectedtoa 27.0kcal;AG=-27.1kcal;AG=-43.2kcalrespectively. Usingthismethod,themagnesiumisvirtualyalremoved fromthebrinegiventhattheproductsolubilityvalueK for magnesiumhydroxideisverylow,only5.61x10'. 5 Solid/liquidseparation23Suchathickeningandfiltration, whilemaintainingthetemperatureofthepulpandthelithium carbonatecakeatbetween50to95°C.Thelithiumcarbonate cakeLiCOisthenwashedwithdemineralizedwater22ata temperaturebetween50to95°C. Thefiltrateandthewaterusedinwashing41arereturned tothesolarevaporationpoolsinordertofurtherprecipitate othersaltssuchashalite,NaCL.Theconcentratedbrine17 obtainedfromthesolarevaporationpoolsisreturnedtothe heatexchanger18alongwiththeconcentratedbrine16in order to recover the lithium content. The lithium carbonate cake24isSubsequentlydissolvedincolddemineralized water O to 30° C. As mentioned herein above, at 0° C. the solubility of lithiumcarbonateis15g/L.Theconversionoflithiumcar bonatetobicarbonateoflithiumandthestageinwhichthis carbonateisdecomposedalongwiththerequisiteequipment aredescribedindetailhereinbelow.Thelithiumcarbonateis dissolvedwithinaconventionalincubator25withstiringfor aperiodoftimebetween1and120minutes.Saidincubator 25isequippedwithaconventionalgasdifuserallowingfor carbon dioxide (CO) 26 to be injected into the reaction chamberatapressureofbetween1and5atmospheresthus allowingforreactionwithwatertoyieldcarbonicacid (HCO)whichinturnreactswithlithiumcarbonatetoform bicarbonateoflithium,inaccordancewiththefollowingfor mulas: Thepulp4formedisthensubjectedtoasolid/liquidsepa rationmethod5suchasthickeningandfiltrationinorderto obtainabrinedepletedinmagnesium7;aswellasdepletedin saltsMg(OH)andCaSO4.2H2O6.Thefilteredbrine7isthen concentratedviaSolarevaporationinpools8whereaddi10 tionalsaltsareprecipitated9suchasbruciteMg(OH),gyp sumCaSO4.2H2O,calciumborateCaBO4.6H2Oandhalite NaCl.Concentratedbrine10having0.8to1.2%lithium contentisthenSubjectedtoasolventextractionprotocol14 thatremovesresidualboron.Table4teachesatypicalformu lationforconcentratedbrineviasolarevaporationobtained fromtheSalardeCaucharithatisthensubjectedtothesolvent extractionprotocol. % TABLE 4 TypicalchemicalcompositionofconcentratedbrinefromtheSalarde CaucharithatisthenSubiectedtotheSolventextractionprotocol. Element Li CI Na K Ca Mg SO B HO O.72 14.2O 6.86 4.2O O.O16 O.OO8 2.97 O.7O 70 25 30 Atthisstage,thebrine'spHisloweredfrom11to7with hydrochloricacidandthensubjectedtoasolventextraction protocol14,inordertoremoveresidualboron,involvingone ormoreextractionstepsusinganaliphaticalcohol.Suchas isoctylalcohol 1,and 5 to20% by volume ofaphase modifier,suchastributylphosphate12,thatisdissolvedinan35 aromaticsolvent,suchasEscaid100,withanextractionratio between1/10and10/1,a1to120minutephasemodification incubationtime,a0to50°C.incubationtemperatureand employinganorganic/brineratioof6/1to1/5withapH between1and7asmeasuredina1/10brineinwaterdilution. 40 TheorganicextractisthenSubjectedtoaconventionalre extractioninvolvingoneormorestagesusinganalkaline Solution13SuchasSodiumhydroxideataconcentration rangingfrom0.01to3moles/L.usinganorganic/aqueous ratiobetween1/5and5/1,anincubationperiodofbetween145 to60minutesandaphaseseparationtotaltimeofbetween1 to120minutes,atatemperaturebetween0to51C.The resultantalkalinesolution15fromthesolventextractionpro tocol 14 contains boron in the form of sodium borate NaBO,andcanthenbecolectedinthesolarevaporation50 pols. Boron depleted brine 16, having boron content below 0.001%,isthenheatedtobetween70to100°C.inaconven tionalheatexchangeunit18.Theheatedbrine42issenttothe lithiumcarbonateprecipitationstage20whereitisallowedto55 reactwithanaqueoussolutionhavinga20to30%byweight sodaash(sodiumcarbonate,NaCO) 19content,atapH between 8 and 12. The reaction iscarried out in one or more conventionalcontainerswithstirersandthermallyinsulated foraperiodofbetween5and150minutes,atatemperatureof between70and100°C.,giventhatlithiumcarbonatehasa solubilityininverseproportiontothetemperature,i.e.7.2g/L at100°C.and15.4g/Lat0°C. Thereactionthatoccursatstep20canbedescribedas follows: 65 2LiCl-Na2CO3, Li2CO3+2NaCl, (5) CO2+H2O, H2CO3, (6) (7) Bicarbonateoflithiumhasmuchgreatersolubilitythan lithiumcarbonate,58g/Lat0°C.or52g/Lat10°C. Solution27containingdissolvedbicarbonateoflithiumis subsequentlyfilteredwithaconventionalfilter43suchasa filterpres.Thefilteredsolution44isthenfedintoareactor 29whereitisheatedwithaconventionalheatexchanger30 locatedinsidethereactorinordertoheatsaidfilteredsolution toatemperaturebetween50to100°C.,conditionsinwhich thelithiumcarbonatedecomposesandyieldscarbondioxide 28whichcaninturnberecirculated.Thereactionthatoccurs isdescribedasfollows: Above50°C.carbonicacidhaslowsolubility,amere0.01 g/Lat95°C.Allthecontaminantswhichaccompanythe lithiumcarbonate24,suchassodiumchlorideNaCL,calcium chlorideCaCL andresidualSulfatesremaininSolution. Pulp31whichisgeneratedandcontainspurifiedprecipi tatedlithiumcarbonateisthensubjectedtoaconventional Solid/liquidseparationstep32Suchasthickeningandfiltering whilemaintainingthelithiumcarbonatepulpatatemperature between50to95°C.Thepurifiedlithiumcarbonatecakeis Subsequentlywashedoneormoretimeswithdemineralized water33atatemperaturerangingfrom50to95°C.The filtratealongwiththewaterusedinwashingaresenttothe solarevaporationpools38inordertofurtherprecipitate impurities39andconcentratethebrinewhichisthenrecir culatedinordertorecovertheremaininglithium17.The purifiedlithiumcarbonatecake34isthendriedatatempera turefrom150to250°C.inconventionalequipment36such asanindirectheating,rotatingovenallowingforcolectionof baterygradelithiumcarbonate37. FIG.2teachesaschematicofthestepsinthepurificationof lithiumcarbonate,showingtheoperationandprincipleequip ment involved. Prior to the addition of lithium carbonate to thereactor2demineralizedwater1isaddedtoreactor2ata

PDF Image | Patent Production of Li from Industrial Brine

PDF Search Title:

Patent Production of Li from Industrial Brine

Original File Name Searched:

US8691169.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)