Sieves for Highly Selective Li Adsorption

PDF Publication Title:

Sieves for Highly Selective Li Adsorption ( sieves-highly-selective-li-adsorption )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 006

Processes 2018, 6, 59 Processes 2018, 6, x FOR PEER REVIEW Processes 2018, 6, x FOR PEER REVIEW 6 of 14 6 of 14 6 of 14 FigFuigreur3e.3S.ySnythnethtiectimcemchecahnaisnmissm:s(:a,(ba),bs)ysnythnethsiessiosfoLfMLOM;O(c;)(ca)bsaobrspotripotnio-dne-dsoerspotripotniomnemcheachnaisnmismofof Figure 3. Synthetic mechanisms: (a,b) synthesis of LMO; (c) absorption-desorption mechanism of λ-Mλ-nMOnO(H2M(HOM) aOnd) aLnMdOL.MO. 2 λ-MnO2 (HMO) and LMO. 3.23..2Io.nIo-Sni-eSviesveCshCahracrtaecrtiezraitziaotnion 3.2. Ion-Sieves Characterization FigFuigruer4es4hsohwoswtshethXeRXDRDpapttaetrtnersnosfotfhethLeMLOM,OH,MHOMOanadntdhethseamsapmleplaeftaefrteardasdosroprtpiotniopnrporcoecssess Figure 4 shows the XRD patterns of the LMO, HMO and the sample after adsorption process (no(nteodteadsaLsMLOM-O1)-.1T).hTehdeidffirfafcraticotniopnepaekaokfoLfMLMOOcocrorersrpesopnodnsdtsotaocaucbuicbiscpsinpeinleHlMHMOOstrsutrcutucrtuer[esp[sapceace (noted as LMO-1). The diffraction peak of LMO corresponds to a cubic spinel HMO structure [space grgoruopu:pF:dF3dm3m(JC(JPCDPSD3S53-057-08728)2],)]w,iwthiththtehleatltaitcteicceocnosntastnatnstisi8s.283.2Å3.ÅI.tIsthsohuoludldbebneonteodtetdhtahtatthtehXeRXDRD group: Fd3m (JCPDS 35-0782)], with the lattice constants is 8.23 Å. It should be noted that the XRD papttaetrtnersnosfoHfMHOMOanadnLdMLMO-O1-a1rearseimsiimlairlawriwthitthethdeifdfrifafcrtaicotniopnapttaetrtnersnosfoLfMLOM,Ow,iwthitlhatltaitcteicceocnosntasntatsnts patterns of HMO and LMO-1 are similar with the diffraction patterns of LMO, with lattice constants ++ ofo8f.081.0Å1Åanadn8d.283.2Å3,Åre,srpesepcteicvteivlye,liyn,dinicdaitciantgintghatthtahtethLeiLisifsrefereteotaocaceccssestshethsetrsutrcutuctrueraenadntdhethMeMn-On-O of 8.01 Å and 8.23 Å, respectively, indicating that the Li+ is free to access the structure and the Mn-O latltaitcteicremreaminasinsstasbtalebldeudruinrgintghethaedasdosroprtpiotnioannadndedsoesroprtpiotniopnrporcoecsse.ssI.t Iits ifsoufonudntdhtahtatthethdeifdfirfafcraticotnion lattice remains stable during the adsorption and desorption process. It is found that the diffraction pepaekaokfoHfMHMOOshsifhtisftsotaohaighhigehredrifdfrifafcrtaicotnioannagnlegltehathnatnhathtaotfoLfMLMO,Ow,hwichhicchacnabnebexepxlapilnaeindedbybtyhtehe peak of HMO shifts to a higher diffraction angle than that of LMO, which can be explained by the ++ ++ memcehcahnaisnmismshsohwoewdeidniFnigFuigruer3ec.3Dc.uDriunrgintghethLeiLdiedsoesroprtpiotniopnrpocroescse,sHs,Hininthtehseosluoltuiotniorneprelapclaecsetshethe mechanism showed in Figure 3c. During the Li+ desorption process, H+ in the solution replaces the ++++++ oriogringainlaplopsiotisoitnioonfoLfiLinitnhtehLeMLMOOthtehieonioicnircadraiudsiuosfoHfHisismsmallaelrletrhtahnaLniL,il,elaedaidnigngtotoceclellslhsrhinriknakgaeg,e, original position of Li+ in the LMO the ionic radius of H+ is smaller than Li+, leading to cell shrinkage, whwichhicihs aislsaolsroepreoprtoerdteidnilnitelirtaetruartuer[e26[]2.6T].hTehcehcahracratecrtiesrtisctidcifdfirfafcraticotniopnepaekaskosfoLfMLMO-O1-a1rearsetislltisllhsahrparp which is also reported in literature [26]. The characteristic diffraction peaks of LMO-1 are still sharp anadnodnolynltyhethientienntesnitsieitsiedsedcreecareseadsecdocmopmapreadrewdiwthitthethLeMLOM,Oin,dinicdaitciantgintghathtathtethHeMHMOOcacnabnebuesuesdefdofror and only the intensities decreased compared with the LMO, indicating that the HMO can be used for ++ effiecffiiecnietnatdasdorspotripotnioonfoLfiL.i . efficient adsorption of Li+. LMO LMO −nO Intensity (a.u) Intensity (a.u) (311) (222) (311) (222) (400) (331) (400) (331) (511) (511) (440) (531) (440) (531) (111) (111) 1010 2020 3030 4040 5050 6060 7070 8080 2Theta (°) 2Theta (° ) Figure 4. XRD patterns of optimized LMO, HMO and LMO-1. Figure 4. XRD patterns of optimized LMO, HMO and LMO-1. Figure 4. XRD patterns of optimized LMO, HMO and LMO-1. Figure 5 describes the XPS spectra of LMO and HMO. As showed in Figure 5a, the spectra of the Figure 5 describes the XPS spectra of LMO and HMO. As showed in Figure 5a, the spectra of the MnF3isguorreb5itdsehsocwrisbetshethebiXndPiSnsgpencterragoyfdLiMffeOreanncdeHofMthOe.AtwsoshpoewakesdwinaFsig5u.1r5ee5Va,t(hΔeEs=pe5c.t1r5aoeVf), Mn3s orbit shows the binding energy difference of the two peaks was 5.15 eV (ΔE = 5.15 eV), 3+ theinMdinca3tsinogrbtihtasthtohwesvtahlenbciensdoinfgMeneinrgLyMdiOffearreenc+e3oafntdhe+4t.wTohpeebaiknsdwinagse5n.1e5rgeyVo(f∆MEn= 5p.1e5akeVw),as indicating that the valences of Mn in LMO are +3 and +4. The binding energy of Mn3+ peak was 4+ 3+ ind64ic1a.3ti3ngeVthatndtheMvnalepnecaekssofwMerne i6n43L.7M6OeVaraen+d36a4n2d.66+4e.V,Twhehibcihndwinegreeonbetragiyneodf Mbynmepaenaskof 641.33 eV and Mn4+ peaks were 643.76 eV and 642.66 eV, which were obtained by means of 4+ wapsea6k4-1d.3if3ferVenatinadtioMn-nimitpaetainkgsawnearlyes6is43a.t7t6heVMann2pd36/242o.r6b6ite(VF,igwuhriec5hbw).eTrheeorbetsauilntsedarbeyinmlienaenwsiothf a peak-differentiation-imitating analysis at the Mn2p3/2 orbit (Figure 5b). The results are in line with a pepakre-dvioffuesrernetpiaotrito[n2-7im]. iTtahteinagvearnaglyesvisalaetntcheoMf Mn2np3in/2LMorObit(+(F3i.g65u)reco5ubl)d. Tbheecarelcsulatsteadre(Tinablilnee2w), iwthhaich previous report [27]. The average valence of Mn in LMO (+3.65) could be calculated (Table 2), which 3+ preisvhioiughsererpthoartn[2th7e].tThheeoraevteicralgveavleanlecnec(e+o3f.5M),ninidniLcaMtiOng(+th3a.6t5p)rcopuoldrtiboencoaflcMulnatedin(TLaMblOe 2is),lwowhiecrhthisan is higher than the theoretical valence (+3.5), indicating that proportion of Mn3+ in LMO is lower than 3+ higtheorrtehtiacnalt.hTehtuhse,oirtectiacnalbvealdeendcuec(e+d3.t5h)a, tinLdMicOatihnagsthaamt poreopsotarbtiloencroyfsMtanl striuncLtuMreO. Fisigluorwee5rcthisanthe theoretical. Thus, it can be deduced that LMO has a more stable crystal structure. Figure 5c is the theXoPrSetsipcaelc.trTahoufsH, iMt cOaninbtehdeeMdnu3csedortbhiattaLndMtOhehbaisnadimngoreenesrtagbyledicfrfeyrsetanlcestoruf tchtuertew. oFipgeuarkes5isc 4is.7t8heV, XPS spectra of HMO in the Mn3s orbit and the binding energy difference of the two peaks is 4.78 eV, XPinSdsipceacttinragothf aHtMthOe minatnhgeaMnens3esvoarlbenitcaenidn tHhMe bOinidsi+n4g. Fenuertrhgeyrmdioffreer,etnhcies oisfathlseotpwrovpeenakbsyitsh4e.7p8eaekV,of indicating that the manganese valence in HMO is +4. Furthermore, this is also proven by the peak of HMO in the Mn2p3/2 orbital (Figure 5d). HMO in the Mn2p3/2 orbital (Figure 5d). λ−ΜnO LMO-1 2 2 L M O -1 JCPDS 35-0782 JCPDS 35-0782

PDF Image | Sieves for Highly Selective Li Adsorption

PDF Search Title:

Sieves for Highly Selective Li Adsorption

Original File Name Searched:

processes-06-00059-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)