logo

Small Particles for Lithium Adsorption from Brine

PDF Publication Title:

Small Particles for Lithium Adsorption from Brine ( small-particles-lithium-adsorption-from-brine )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 012

Coatings 2021, 11, 854 12 of 13 14. Kotsupalo, N.; Ryabtsev, A. Effect of structure on the sorption properties of chlorine-containing form of double aluminum lithium hydroxide. Russ. J. Appl. Chem. 2013, 86, 482–487. [CrossRef] 15. Nisola, G.M.; Limjuco, L.A.; Vivas, E.L.; Lawagon, C.P.; Park, M.J.; Shon, H.K.; Mittala, N.; Nah, I.W.; Kim, H.; Chung, W. Macroporous flexible polyvinyl alcohol lithium adsorbent foam composite prepared via surfactant blending and cryo-desiccation. CEJ 2015, 280, 536–548. [CrossRef] 16. Chitrakar, R.; Makita, Y.; Ooi, K.; Sonoda, A. Magnesium-doped manganese oxide with lithium ion-sieve property: Lithium ad- sorption from salt lake brine. Bull. Chem. Soc. Jpn. 2013, 86, 850–855. [CrossRef] 17. Bi, Q.; Zhang, Z.; Zhao, C.; Tao, Z. Study on the recovery of lithium from high Mg2+/Li+ ratio brine by nanofiltration. Water Sci. Technol. 2014, 70, 1690–1694. [CrossRef] 18. Ou, R.; Zhang, H.; Wei, J.; Kim, S.; Wan, L.; Nguyen, N.S.; Hu, Y.; Zhang, X.; Simon, G.P. Thermoresponsive amphoteric metal-organic frameworks for efficient and reversible adsorption of multiple salts from water. Adv. Mater. 2018, 30, e1802767. [CrossRef] 19. Ji, C.; Wu, D.; Lu, J.; Shan, C.; Ren, Y.; Li, T.; Lv, L.; Pan, B.; Zhang, W. Temperature regulated adsorption and desorption of heavy metals to a-Mil-121: Mechanisms and the role of exchangeable protons. Water Res. 2020, 189, 116599. [CrossRef] 20. Yamamoto, D.; Maki, T.; Watanabe, S.; Tanaka, H.; Miyahara, M.T.; Mae, K. Synthesis and adsorption properties of zif-8 na-noparticles using a micromixer. CEJ 2013, 227, 145–150. 21. Marshall, C.; Staudhammer, S.A.; Brozek, C.K. Size control over metal–organic framework porous nanocrystals. Chem. Sci. 2019, 10, 9396–9408. [CrossRef] 22. Han, Y.-H.; Tian, C.-B.; Li, Q.-H.; Du, S.-W. Highly chemical and thermally stable luminescent EuxTb1−xMOF materials for broad-range pH and temperature sensors. J. Mater. Chem. C 2014, 2, 8065–8070. [CrossRef] 23. Mendiratta, S.; Usman, M.; Chang, C.; Lee, Y.C.; Chen, J.W.; Wu, M.K. Zn(ii)-based metal–organic framework: An excep-tionally thermally stable, guest-free low dielectric material. J. Mater. Chem. 2017, 5, 1508–1513. [CrossRef] 24. Kamal, S.; Chiou, K.R.; Sainbileg, B.; Inamdar, A.I.; Usman, M.; Pathak, A.; Luo, T.-T.; Chen, J.-W.; Hayashi, M.; Hung, C.-H.; et al. Ther- mally stable indium based metal–organic frameworks with high dielectric permittivity. J. Mater. Chem. C 2020, 8, 9724–9733. [CrossRef] 25. Zhu, Y.P.; Yin, J.E.; Abou-Hamad, X.; Liu, W.; Chen, T. Highly stable phosphonate-based mofs with engineered bandgaps for efficient photocatalytic hydrogen production. Adv. Mater. 2020, 32, 1906368. [CrossRef] 26. Ricco, R.; Liang, W.; Li, S.; Gassensmith, J.J.; Caruso, F.; Doonan, C.; Falcaro, P. Metal-organic frameworks for cell and virus biology: A perspective. ACS Nano 2018, 12, 13–23. [CrossRef] 27. Li, H.; Lv, N.; Li, X.; Liu, B.; Feng, J.; Ren, X.; Guo, T.; Chen, D.; Stoddart, J.F.; Gref, R.; et al. Composite CD-MOF nanocrystals- containing microspheres for sustained drug delivery. Nanoscale 2017, 9, 7454–7463. [CrossRef] 28. Li, S.; Huo, F. Metal-organic framework composites: From fundamentals to applications. Nanoscale 2015, 7, 7482–7501. [CrossRef] 29. Liu, M.; Xie, K.; Nothling, M.D.; Gurr, P.A.; Tan, S.S.L.; Fu, Q.; Webley, P.A.; Qiao, G.G. Ultrathin metal-organic frame-work nanosheets as a gutter layer for flexible composite gas separation membranes. ACS Nano 2018, 12, 11591–11599. [CrossRef] 30. Stavila, V.; Bhakta, R.K.; Alam, T.M.; Majzoub, E.H.; Allendorf, M.D. Reversible hydrogen storage by NaAlH4 confined within a titanium-functionalized MOF-74(Mg) nanoreactor. ACS Nano 2012, 6, 9807–9817. [CrossRef] 31. Babal, A.S.; Tan, J.-C. Influence of mechanical, thermal, and electrical perturbations on the dielectric behaviour of guest- encapsulated HKUST-1 crystals. J. Mater. Chem. C 2020, 8, 12886–12892. [CrossRef] 32. Bi, S.; Banda, H.; Chen, M.; Niu, L.; Chen, M.; Wu, T.; Wang, J.; Wang, R.; Feng, J.; Chen, T.; et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with Mof electrodes and ionic liquid electrolytes. Nat. Mater. 2019, 19, 552–558. [CrossRef] 33. Van Vleet, M.; Weng, T.; Li, X.; Schmidt, J. In situ, time-resolved, and mechanistic studies of metal–organic framework nucleation and growth. Chem. Rev. 2018, 118, 3681–3721. [CrossRef] 34. Chen, J.; Shen, K.; Li, Y. Greening the processes of metal-organic framework synthesis and their use in sustainable catalysis. ChemSusChem 2017, 10, 3165–3187. [CrossRef] 35. Ibarra, I.A.; Bayliss, P.A.; Yang, S.; Nowell, H.; Poliakoff, M.; Pérez, E.; Blake, A.J.; Allan, D.R.; Schröder, M. Near-critical water, a cleaner solvent for the synthesis of a metal–organic framework. Green Chem. 2012, 14, 117–122. [CrossRef] 36. Guo, W.; Sun, W.; Lv, L.P.; Kong, S.; Wang, Y. Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for Li-ion storage. ACS Nano 2017, 11, 4198–4205. [CrossRef] [PubMed] 37. Li, Z.Q.; Qiu, L.G.; Tao, X.; Yun, W.; Wei, W.; Wu, Z.Y. Ultrasonic synthesis of the microporous metal–organic framework cu 3 (btc) 2 at ambient temperature and pressure: An efficient and environmentally friendly method. Mater. Lett. 2019, 63, 78–80. [CrossRef] 38. Yan, D.; Gao, R.; Wei, M.; Li, S.; Lu, J.; Evans, D.G.; Duan, X. Mechanochemical synthesis of a fluorenone-based metal organic framework with polarized fluorescence: An experimental and computational study. J. Mater. Chem. C 2013, 1, 997–1004. [CrossRef] 39. Frišcˇic ́, T.; Halasz, I.; Štrukil, V.; Eckert-Maksic ́, M.; Dinnebier, R.E. Clean and efficient synthesis using mechanochemistry: Coordination polymers, metal-organic frameworks and metallodrugs. Croat. Chem. Acta 2012, 85, 367–378. [CrossRef] 40. Gaab, M.; Trukhan, N.; Maurer, S.; Gummaraju, R.; Müller, U. The progression of Al-based metal-organic frameworks—From academic research to industrial production and applications. Microporous Mesoporous Mater. 2012, 157, 131–136. [CrossRef]

PDF Image | Small Particles for Lithium Adsorption from Brine

small-particles-lithium-adsorption-from-brine-012

PDF Search Title:

Small Particles for Lithium Adsorption from Brine

Original File Name Searched:

coatings-11-00854-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP