PDF Publication Title:
Text from PDF Page: 009
Dowson and Styring CO2 Butanol TaBle 3 | Minimum energy cost per liter of butanol fuel produced from CO2 and hydrogen only. or modification of those engines. The transformation, which is overall exothermic from the Grignard reagent, is facilitated by the high energy of the organometallic starting material. Energy is therefore required to regenerate the magnesium from the stoichiometric amount of magnesium halide by-product. If this is reprocessed using standard high-efficiency industry electrolysis techniques using renewable energy then the cost of this step is minimized. The methodology allows liquid fuels to be produced from renewable, weather-dependent electricity at times where it would otherwise be curtailed, or in situations where dedicated generation is installed. This provides a potentially excellent method for chemical energy storage across seasons, otherwise not possible using other storage methods. The process also adds value to the system by removing carbon dioxide from primary emissions sources, storing otherwise curtailed excess renewable energy and by avoiding new fossil carbon from entering the supply chain when the fuel is used. While current projected utilization quantities are expected to fall short of the vast quan- tities of CO2 anthropogenically emitted, it provides a tool in the arsenal for the production of low-carbon fuels and to balance energy demands in an increasingly intermittently powered world. It is recognized that the fuel will eventually lead to CO2 emissions, but this will not be new carbon but second genera- tion, upcycled carbon. The fact that flue gas concentration carbon dioxide is used means that the costly carbon capture step can be omitted, although it would be required in some form for total synthesis of fuel from CO2 and hydrogen alone. In the original case where methanol or methane are used as starting reagents, this is an example of reactive capture of CO2 where the gas is chemically removed from the flue gas stream, thereby purifying the waste stream while at the same time producing a value-added product. The process has a number of steps including the esterification and Claisen condensation where improvements can be made through more precise definition of the reaction parameters. The overall carbon avoidance can also be improved by using metha- nol sources from CO2 to prepare the Grignard reagent through methanol bromination and by preparing the methyl rather than the ethyl ester. We will also look at using real flue gases from industrial emissions to test the robustness of the methodology and product purity. aUThOr cOnTriBUTiOns GRMD was the Postdoctoral Research Associate who carried out the laboratory work. PS was the academic supervisor and Principal Investigator. There were equal contributions to the production of this paper. FUnDing We thank EPSRC for funding the 4CU Programme Grant (EP/K001329/1) at the University of Sheffield which has sup- ported this work and GRMD. We also thank EPSRC for fund- ing of the CO2Chem Grand Challenge Network to PS (EP/ K007947/1 and EP/H035702/1). reaction component Magnesium electrolysisa Hydrogen productiona Claisen base/acida Total energy cost Product fuel energy Energy efficiency aCalculated as in Table 2. required amount 531.2 g/L 264.4 g/L 437.1 g/L – – – reaction energy costs 13.37 MJ/L 50.41 MJ/L 1.53 MJ/L 65.31 MJ/L 29.2 MJ/L 44.7% listed below the table and assumes 100% chemical yields for all steps but with realistic energy requirements for the reagent costs. While such maximal yields are implausible, near-quantitative yields for each step should be possible in principle. Note also that this calculation omits the production of methanol/methane from CO2 as with Figure 7. A calculation including the energy costs of the additional hydrogen required to form the methanol and methane required for the Grignard route are shown in Table 3. However, it should be noted that these figures omit any costs of capture and purification of CO2 from a waste gas stream, which would be required for the initial step of this route. These two tables illustrate that the energy costs associated with chemical looping of magnesium to capture CO2 and upgrade methanol or methane to drop-in petrol replacement does not significantly outstrip the energy gain in the content of the produced fuel. In addition, it can be seen in the two tables that the conversion of CO2, methanol or methane into butanol by a CDU approach, and without any additional energy recovery but with optimistic reaction yields, could in principle convert nearly half of a given quantity of electrical energy into a storable fuel that is directly compatible with existing infrastructure. While it is tempting to therefore make compari- sons with the efficiencies of existing energy storage methods such as pumped hydroelectric storage and compressed air energy storage (which are higher), these approaches would have a completely different role in energy storage than a CDU- based fuel. Overall, we believe that it is not unreasonable to suggest that CDU fuel production could realistically represent a new tool in balancing electricity demand and supply and could, with suffi- cient installation of renewable energy, make a tangible impact in reducing the carbon footprint of liquid fuel transportation. cOnclUsiOn Butanol can be produced using a multi-step synthetic approach from methane or methanol via a Grignard reagent that reacts with dilute carbon dioxide in nitrogen to give an acetate intermediate. Classic synthetic organic chemistry then allows homologation to give a four-carbon backbone that is partially hydrogenated to yield a mixture of 1- and 2-butanol. Each isomer has a higher octane number and energy density than octane itself and can be used as a direct drop-in fuel for gasoline-based combustion engines. This means the fuel can be used directly in existing automobile engines without blending Frontiers in Energy Research | www.frontiersin.org 9 October 2017 | Volume 5 | Article 26PDF Image | Demonstration of CO2 Conversion to Synthetic Transport Fuel
PDF Search Title:
Demonstration of CO2 Conversion to Synthetic Transport FuelOriginal File Name Searched:
fenrg-05-00026.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |