PDF Publication Title:
Text from PDF Page: 010
Dowson and Styring CO2 Butanol reFerences Bienholz, A., Blume, R., Knop-Gericke, A., Girgsdies, F., Behrens, M., and Claus, P. (2011). Prevention of catalyst deactivation in the hydrogenolysis of glycerol by Ga2O3-modified copper/zinc oxide catalysts. J. Phys. Chem. C 115, 999–1005. doi:10.1021/jp104925k Blamey, J., Anthony, E. J., Wang, J., and Fennell, P. S. (2010). The calcium looping cycle for large-scale CO2 capture. Prog. Energy Combust. Sci. 36, 260–279. doi:10.1016/j.pecs.2009.10.001 BP Statistics, B. P. (2015). BP Energy Outlook 2035. London, UK: BP plc. Brands, D. S., Poels, E. K., and Bliek, A. (1999). Ester hydrogenolysis over promoted Cu/SiO2 catalysts. Appl. Catal. A Gen. 184, 279–289. doi:10.1016/ S0926-860X(99)00106-4 Coombs, D. (2016). Propylene: The “Other” Olefin, Goldman Sachs Chemicals Intensity Conference, March 2016. Houston, TX, USA. Davis, B. R., and Garratt, P. J. (1991). “Acylation of esters, ketones and nitriles,” in Comprehensive Organic Synthesis, eds B. M. Trost and I. Fleming. 2nd Edn, (Pergamon, Oxford, UK), 795–863. Demirci, G., and Karakaya, I. (2012). “Molten salt hydrolysis of MgCl2 in a cell with rapid chlorine removal feature,” in 2012 Magnesium Technology, eds S. N. Mathaudhu, W. H. Sillekens, N. R. Neelameggham, and N. Hort (Hoboken, NJ, USA: John Wiley & Sons), 59–62. Dincer, I., and Acar, C. (2015). Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrogen Energy 40, 11094–11111. doi:10.1016/j.ijhydene.2014.12.035 Dowson, G. R. M., Dimitriou, I., Owen, R. E., Reed, D. G., Allen, R. W. K., and Styring, P. (2015). Kinetic and economic analysis of reactive capture of dilute carbon dioxide with Grignard reagents. Faraday Discuss. 183, 47–65. doi:10.1039/c5fd00049a Dowson, G. R. M., Haddow, M. F., Lee, J., Wingad, R. L., and Wass, D. F. (2013). Catalytic conversion of ethanol into an advanced biofuel: unprecendented selectivity for n-butanol. Angew. Chem. Int. Ed. 52, 9005–9008. doi:10.1002/ anie.201303723 Dowson, G. R. M., Reed, D. G., Bellas, J.-M., Charalambous, C., and Styring, P. (2016). Fast and selective separation of carbon dioxide from dilute streams by pressure swing adsorption using solid ionic liquids. Faraday Discuss. 2016, 511–527. doi:10.1039/C6FD00035E Dry, M. E. (2002). The Fischer-Tropsh process: 1950–2000. Catal. Today 71, 227–241. doi:10.1016/S0920-5861(01)00453-9 Dudley, B. (2015). BP Statistical Review of World Energy 2015. London, UK. Fisher, N., and McElvain, S. M. (1934). The acetoacetic ester condensation. VII. The condensation of various alkyl acetates. J. Am. Chem. Soc. 56, 1766–1769. doi:10.1021/ja01323a034 Global CCS Institute. (2016). in Global Status of CCS: 2016, Projects, Policy and Markets, eds P. Grubnic, I. Havercroft, L. Irlam, N. James, P. Tomski, and S. Vaghi (Brussels, Belgium: Global CCS Institute). Goebel, M., and Marvel, C. (1933). The oxidation of Grignard reagents. J. Am. Chem. Soc. 55, 1693–1696. doi:10.1021/ja01331a065 Group, S. G. L. (2014). Systems – HCl Synthesis. Meitingen, Germany. Gunning, P., and Hills, C. (2015). 9th International Conference on the Environmental and Technical Implications of Construction with Alternative Materials. Santander, Spain. Hay, R. W., and Bond, M. A. (1967). Kinetics of the decarboxylation of acetoacetic acid. Aust. J. Chem. 20, 1823–1828. doi:10.1071/CH9671823 He, Z., Qian, Q., Ma, J., Meng, Q., Zhou, H., Song, J., et al. (2016). Water-enhanced synthesis of higher alcohols from CO2 hydrogenation over a Pt/Co3O4 catalyst under milder conditions. Angew. Chem. Int. Ed. 55, 737–741. doi:10.1002/anie. 201507585 Heffer, P., and Prud’homme, M. (2015). Short-Term Fertilizer Outlook 2015–2016. Paris, France: International Fertilizer Industry Association. Hendricks, C., Noothout, P., Zakkour, P., and Cook, G. (2013). Implications of the Reuse of Captured CO2 for European Climate Action Policies. Netherlands: ECOFYS. Ho, C. R., Shylesh, S., and Bell, A. T. (2016). Mechanism and kinetics of ethanol coupling to butanol over hydroxyapatite. ACS Catal. 6, 939–948. doi:10.1021/ acscatal.5b02672 IEA. (2009). in Technology Roadmap: Carbon Capture and Storage, eds T. Kerr and B. Beck (Paris, France: IEA). International Energy Agency. (2016). World Energy Outlook. Paris, France. IPCC. (2014). in Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds R. K. Pachauri and L. A. Meyer (Geneva, Switzerland: IPCC). Irimescu, A. (2012). Performance and fuel conversion efficiency of a spark igni- tion engine fuelled with iso-butanol. Appl. Energy 96, 477–483. doi:10.1016/j. apenergy.2012.03.012 Jaramillo, P., Griffin, W. M., and McCoy, S. T. (2009). Life cycle inventory of CO2 in an enhanced oil recovery system. Environ. Sci. Technol. 43, 8027–8032. doi:10.1021/es902006h Koda, K., Matsu-ura, T., Obora, Y., and Ishii, Y. (2009). Guerbet reaction of eth- anol to n-butanol catalyzed by iridium complexes. Chem. Lett. 38, 838–839. doi:10.1246/cl.2009.838 Langanke, J., Wolf, A., Hofmann, J., Böhm, K., Subhani, M. A., Müller, T. E., et al. (2014). Carbon dioxide (CO2) as sustainable feedstock for polyurethane production. Green Chem. 16, 1865–1870. doi:10.1039/C3GC41788C Levdikova, T. (2014). Butadiene: 2014 World Market Outlook and Forecast up to 2018. Birmingham, UK: The Market Publishers. Lin, Y.-J., Chen, E., and Rochelle, G. T. (2016). Pilot plant test of the advanced flash stripper for CO2 capture. Faraday Discuss. 192, 37–58; discussion 567. doi:10.1039/C6FD00029K Martinez-Anido, C. B., Brinkman, G., and Hodge, B.-M. (2016). The impact of wind power on electricity prices. Renew. Energy 94, 474–487. doi:10.1016/j. renene.2016.03.053 Mikkelsen, M., Jørgensen, M., and Krebs, F. (2010). The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 3, 43–81. doi:10.1039/B912904A Mobility, F. I. A. (2015). Global Reduction in CO2 Emissions from Cars: A Consumer Perspective. Paris, France: FIA Mobility. Morris, C. (2015). Renewable Power Curtailment Skyrockets in Germany. Energy Transition. Available at: https://energytransition.org/2015/11/renewable-pow- er-curtailment-in-germany/ (Last accessed September 23, 2017). New Zealand Ministry of Transport and SGS Industrial, Penrose. (2009). Bioethanol Corrosion Testing: Results of Bioethanol Corrosion Testing. Auckland, New Zealand. NIST. (2017). Thermodynamic Data for All Reactions, Intermediates and Products. US National Institutes of Standards and Technology (NIST), Chemistry Webbook. Available at: http://webbook.nist.gov/chemistry/ (Last accessed September 26, 2017). Olah, G. A., Gupta, B., Farina, M., Felber, J. D., Ip, W. M., Husain, A., et al. (1985). Electrophilic reactions at single bonds. 20. Selective monohalogenation of methane over supported acidic or platinum metal catalysts and hydrolysis of methyl halides over.gamma.-alumina-supported metal oxide/hydroxide catalysts. A feasible path for the oxidative conversion of methane into methyl alcohol/dimethyl ether. J. Am. Chem. Soc. 107, 7097–7105. Olivier, J. G. J., Janssens-Maenhout, G., Muntean, M., and Peters, J. A. H. W. (2017). Trends in Global CO2 Emissions. 2016 Report. The Hague, Ispra: PBL Netherlands Environmental Assessment Agency, European Commission, Joint Research Centre. Podkolzin, S. G., Stangland, E. E., Jones, M. E., Peringer, E., and Lercher, J. A. (2007). Methyl chloride production from methane over lanthanum-based catalysts. J. Am. Chem. Soc. 129, 2569–2576. doi:10.1021/ja066913w Polmear, I. J. (1999). “Introduction,” in Magnesium and Magnesium Alloys, eds M. M. Avedesian and H. Baker (OH, USA: ASM International), 3–6. Saeidi, S., Amin, N. A. S., and Rahimpour, M. R. (2014). Hydrogenation of CO2 to value-added productions – a review and potential future developments. J. CO2 Util. 5, 66–81. doi:10.1016/j.jcou.2013.12.005 Schlander, J. H., and Turek, T. (1999). Gas-phase hydrogenolysis of dimethyl maleate to 1,4-butanediol and y-butyrolactone over copper/zinc oxide catalysis. Ind. Eng. Chem. Res. 38, 1264–1270. doi:10.1021/ie980606k Soosaiprakasam, I. R., and Veawab, A. (2008). Corrosion and polarization behaviour of carbon steel in MEA-based CO2 capture process. Int. J. Greenhouse Gas Control 2, 553–562. doi:10.1016/j.ijggc.2008.02.009 Stratas Advisors. (2016). Global Refining Outlook: 2016–2035. Houston, TX, USA: Hart Energy. Styring, P., Quadrelli, A., and Armstrong, K. (2015). Carbon Dioxide Utilisation: Closing the Carbon Cycle. Oxford, UK: Elsevier. Szulczyk, K. R. (2010). Which is a better transportation fuel – butanol or ethanol? Int. J. Energy Environ. 1, 501–512. Frontiers in Energy Research | www.frontiersin.org 10 October 2017 | Volume 5 | Article 26PDF Image | Demonstration of CO2 Conversion to Synthetic Transport Fuel
PDF Search Title:
Demonstration of CO2 Conversion to Synthetic Transport FuelOriginal File Name Searched:
fenrg-05-00026.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)