logo

Fuel Cell Handbook (Seventh Edition)

PDF Publication Title:

Fuel Cell Handbook (Seventh Edition) ( fuel-cell-handbook-seventh-edition )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 145

∆ VAnode (mV) = 55 log (PH2 )2 (5-10) (PH2 )1 where P H2 is the average partial pressure of H2. At 190 °C (374 °F), the presence of 10 percent CO2 in H2 should cause a voltage loss of about 2 mV. Thus, diluents in low concentrations are not expected to have a major effect on electrode performance; however, relative to the total anode polarization (i.e., 3 mV/100 mA/cm2), the effects are large. It has been reported (16) that with pure H2, the cell voltage at 215 mA/cm2 remains nearly constant at H2 utilizations up to 90 percent, and then it decreases sharply at H2 utilizations above this value. Low utilizations, particularly oxygen utilization, yield high performance. Low utilizations, however, result in poor fuel use. Optimization of this parameter is required. State-of-the-art utilizations are on the order of 85 percent and 50 percent for the fuel and oxidant, respectively. 5.2.4 EffectofImpurities The concentrations of impurities entering the PAFC are very low relative to diluents and reactant gases, but their impact on performance is significant. Some impurities (e.g., sulfur compounds) originate from fuel gas entering the fuel processor and are carried into the fuel cell with the reformed fuel, whereas others (e.g., CO) are produced in the fuel processor. Carbon Monoxide: The presence of CO in a H2-rich fuel has a significant effect on anode performance because CO affects Pt electrode catalysts. CO absorption is reported to arise from the dual site replacement of one H2 molecule by two CO molecules on the Pt surface (40, 41). According to this model, the anodic oxidation current at a fixed overpotential, with (iCO) and without (iH2) CO present, is given as a function of CO coverage (θCO) by Equation (5-11): iCO = (1 - θCO )2 iH2 For [CO]/[H2] = 0.025, θCO = 0.31 at 190°C (35); therefore, iCO is about 50 percent of iH2. (5-11) Both temperature and CO concentration have a major influence on the oxidation of H2 on Pt in CO containing fuel gases. Benjamin, et al. (35) derived Equation (5-12) for the voltage loss resulting from CO absorption as a function of temperature ∆VCO = k(T) ([CO]2 - [CO]1) (5-12) where k(T) is a function of temperature, and [CO]1 and [CO]2 are the mole fractions CO in the fuel gas. The values of k(T) at various temperatures are listed in Table 5-3. Using Equation (5-12) and the data in Table 5-3, it is apparent that for a given change in CO content, ∆VCO is about 8.5 times larger at 163 °C (325 °F) than at 218 °C (424 °F). The correlation provided by Equation (5-12) was obtained at 269 mA/cm2; thus, its use at significantly different current densities may not be 5-16

PDF Image | Fuel Cell Handbook (Seventh Edition)

fuel-cell-handbook-seventh-edition-145

PDF Search Title:

Fuel Cell Handbook (Seventh Edition)

Original File Name Searched:

fuel-cell-handbook.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP