logo

Fuel Cell Handbook (Seventh Edition)

PDF Publication Title:

Fuel Cell Handbook (Seventh Edition) ( fuel-cell-handbook-seventh-edition )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 162

exposed to fuel gases in the anode compartment) with a Ni layer. The Ni layer is stable in the reducing gas environment of the anode compartment, and it provides a conductive surface coating with low contact resistance. Pigeaud, et al. describe approaches to circumvent the problems associated with gas leaks and corrosion of bipolar plates (25). Corrosion is largely overcome by applying a coating (about 50 μm thickness) at the vulnerable locations on the bipolar plate. For example, the wet-seal25 area on the anode side is subject to a high chemical potential gradient because of the fuel gas inside the cell and the ambient environment (usually air) on the outside of the cell, which promotes corrosion (about two orders of magnitude greater than in the cathode wet-seal area (26)). Donado, et al. present a general discussion on corrosion in the wet-seal area of MCFCs (27). A thin aluminum coating in the wet-seal area of a bipolar plate provides corrosion protection by forming a protective layer of LiAlO2 after reaction of Al with Li2CO3 (28). Such a protective layer would not be useful in areas of the bipolar plate that must permit electronic conduction because LiAlO2 is an insulating material. A dense and electronically insulating layer of LiAlO2 is not suitable for providing corrosion resistance to the cell current collectors because these components must remain electrically conductive. The typical materials used for this application are 316 stainless steel and Ni plated stainless steels. However, materials with better corrosion resistance are required for long-term operation of MCFCs. Research is continuing to understand the corrosion processes of high- temperature alloys in molten carbonate salts under both fuel gas and oxidizing gas environments (29, 28) and to identify improved alloys (30) for MCFCs. Stainless steels such as Type 310 and 446 have demonstrated better corrosion resistance than Type 316 in corrosion tests (30). 6.1.2 DevelopmentComponents MCFC components are limited by several technical considerations (31), particularly those described in Section 6.1.1. Even though present approaches function properly in full size cells at atmospheric pressure, research is addressing alternate cathode materials and electrolytes, performance improvement, life extension beyond the commercialization goal of five years, and cost reduction (32). The studies described in recent literature provide updated information on promising development of the electrodes, the electrolyte matrix, and the capability of the cell to tolerate trace contaminants in the fuel supply. Descriptions of some of this work follow. Anode: As stated in Section 6.1.1 and Reference (33), state-of-the-art anodes are made of a Ni- Cr/Ni-Al alloy. The Cr was added to eliminate the problem of anode sintering. However, Ni-Cr anodes are susceptible to creep when placed under the torque load required in the stack to minimize contact resistance between components. The Cr in the anode is also lithiated by the electrolyte; then it consumes carbonate. Developers are trying lesser amounts of Cr (8 percent) to reduce the loss of electrolyte, but some have found that reducing the Cr by 2 percentage points increased creep (34). Several developers have tested Ni-Al alloy anodes that provide creep resistance with minimum electrolyte loss (34, 35, 36). The low creep rate with this alloy is attributed to the formation of LiAlO2 dispersed in Ni (35). 25. The area of contact between the outer edge of the bipolar plate and the electrolyte structure prevents gas from leaking out of the anode and cathode compartments. The gas seal is formed by compressing the contact area between the electrolyte structure and the bipolar plate so that the liquid film of molten carbonate at operating temperature does not allow gas to permeate through. 6-9

PDF Image | Fuel Cell Handbook (Seventh Edition)

fuel-cell-handbook-seventh-edition-162

PDF Search Title:

Fuel Cell Handbook (Seventh Edition)

Original File Name Searched:

fuel-cell-handbook.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP