PDF Publication Title:
Text from PDF Page: 069
Energies 2020, 13, 420 69 of 96 147. Roeb,M.;Säck,J.P.;Rietbrock,P.;Prahl,C.;Schreiber,H.;Neises,M.;deOliveira,L.;Graf,D.;Ebert,M.; Reinalter, W.; et al. Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower. Sol. Energy 2011, 85, 634–644. [CrossRef] 148. Säck, J.; Breuer, S.; Cotelli, P.; Houaijia, A.; Lange, M.; Wullenkord, M.; Spenke, C.; Roeb, M.; Sattler, C. High temperature hydrogen production: Design of a 750 KW demonstration plant for a two step thermochemical cycle. Sol. Energy 2016, 135, 232–241. [CrossRef] 149. Siegel,N.P.;Miller,J.E.;Ermanoski,I.;Diver,R.B.;Stechel,E.B.Factorsaffectingtheefficiencyofsolardriven metal oxide thermochemical cycles. Ind. Eng. Chem. Res. 2013, 52, 3276–3286. [CrossRef] 150. Riahi,A.;Atashkari,K.;Mahmoudimehr,J.;Rodat,S.Theinfluencesofmajorgeometricalparameterson detailed radiative performance of a multi-tubular solar thermochemical reactor. Appl. Therm. Eng. 2019, 159, 113793. [CrossRef] 151. Schiebahn,S.;Grube,T.;Robinius,M.;Tietze,V.;Kumar,B.;Stolten,D.Powertogas:Technologicaloverview, systems analysis and economic assessment for a case study in Germany. Int. J. Hydrog. Energy 2015, 40, 4285–4294. [CrossRef] 152. Ursúa,A.;Gandía,L.M.;Sanchis,P.Hydrogenproductionfromwaterelectrolysis:Currentstatusandfuture trends. Proc. IEEE 2011, 100, 410–426. [CrossRef] 153. Sapountzi, F.M.; Gracia, J.M.; Weststrate, C.J.; Kee, J.; Fredriksson, H.O.A.; Niemantsverdriet, J.W. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Prog. Energy Combust. Sci. 2017, 58, 1–35. [CrossRef] 154. Buttler,A.;Spliethoff,H.Currentstatusofwaterelectrolysisforenergystorage,gridbalancingandsector coupling via power-to-gas and power-to-liquids: A review. Renew. Sustain. Energy Rev. 2018, 82, 2440–2454. [CrossRef] 155. Rashid,M.M.;Mesfer,M.K.;Naseem,H.;Danish,M.Hydrogenproductionbywaterelectrolysis:Areview of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. Int. J. Eng. Adv. Technol. 2015, 4, 2249–8958. 156. Malkow,T.;Pilenga,A.;Tsotridis,G.;DeMarco,G.EUHarmonisedPolarisationCurveTestMethodforLow Temperature Water Electrolysis; Publications Office of the European Union: Brusselsm, Belgium, 2018. 157. Graves,C.;Ebbesen,S.D.;Mogensen,M.;Lackner,K.S.SustainablehydrocarbonfuelsbyrecyclingCO2and H2O with renewable or nuclear energy. Renew. Sustain. Energy Rev. 2011, 15, 1–23. [CrossRef] 158. Wang,M.;Wang,Z.;Gong,X.;Guo,Z.Theintensificationtechnologiestowaterelectrolysisforhydrogen production-A review. Renew. Sustain. Energy Rev. 2014, 29, 573–588. [CrossRef] 159. Marini,S.;Salvi,P.;Nelli,P.;Pesenti,R.;Villa,M.;Berrettoni,M.;Zangari,G.;Kiros,Y.Advancedalkaline water electrolysis. Electrochim. Acta 2012, 82, 384–391. [CrossRef] 160. Feng,Q.;Yuan,X.Z.;Liu,G.;Wei,B.;Zhang,Z.;Li,H.;Wang,H.Areviewofprotonexchangemembrane water electrolysis on degradation mechanisms and mitigation strategies. J. Power Sources 2017, 366, 33–55. [CrossRef] 161. Scott, K. Process intensification: An electrochemical perspective. Renew. Sustain. Energy Rev. 2018, 81, 1406–1426. [CrossRef] 162. Tijani,A.S.;Rahim,A.H.A.NumericalmodelingtheeffectofoperatingvariablesonFaradayefficiencyin PEM electrolyzer. Procedia Technol. 2016, 26, 419–427. [CrossRef] 163. Kai, J.; Saito, R.; Terabaru, K.; Li, H.; Nakajima, H.; Ito, O. Effect of temperature on the performance of polymer electrolyte membranewater electrolysis: Numerical analysis of electrolysis voltage considering gas/liquid two-phase flow. J. Electrochem. Soc. 2019, 166, F246–F254. [CrossRef] 164. Buelvas,W.L.;Ávila,K.C.P.;Jiménez,Á.R.Temperatureasafactordeterminingonwaterelectrolysis.Int.J. Eng. Trends Technol. 2014, 7, 5–9. [CrossRef] 165. Roy,A.;Watson,S.;Infield,D.Comparisonofelectricalenergyefficiencyofatmosphericandhigh-pressure electrolysers. Int. J. Hydrog. Energy 2006, 31, 1964–1979. [CrossRef] 166. Santos, D.M.F.; Sequeira, C.A.C.; Figueiredo, J.L. Hydrogen production by alkaline water electrolysis. Quim. Nova 2013, 36, 1176–1193. [CrossRef] 167. Bodner, M.; Hofer, A.; Hacker, V. H2 generation from alkaline electrolyzer. Wiley Interdiscip. Rev. Energy Environ. 2015, 4, 365–381. [CrossRef] 168. Zeng,K.;Zhang,D.Recentprogressinalkalinewaterelectrolysisforhydrogenproductionandapplications. Prog. Energy Combust. Sci. 2010, 36, 307–326. [CrossRef]PDF Image | Green Synthetic Fuels
PDF Search Title:
Green Synthetic FuelsOriginal File Name Searched:
energies-13-00420.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)