logo

Green Synthetic Fuels

PDF Publication Title:

Green Synthetic Fuels ( green-synthetic-fuels )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 071

Energies 2020, 13, 420 71 of 96 193. Ganci,F.;Lombardo,S.;Sunseri,C.;Inguanta,R.Nanostructuredelectrodesforhydrogenproductionin alkaline electrolyzer. Renew. Energy 2018, 123, 117–124. [CrossRef] 194. Subbaraman,R.;Tripkovic,D.;Strmcnik,D.;Chang,K.-C.;Uchimura,M.;Paulikas,A.P.;Stamenkovic,V.; Markovic, N.M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256–1260. [CrossRef] [PubMed] 195. Carmo, M.; Fritz, D.L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 2013, 38, 4901–4934. [CrossRef] 196. Grubb,W.T.Ionicmigrationinion-exchangemembranes.J.Phys.Chem.1959,63,55–58.[CrossRef] 197. Gahleitner,G.Hydrogenfromrenewableelectricity:Aninternationalreviewofpower-to-gaspilotplantsfor stationary applications. Int. J. Hydrog. Energy 2013, 38, 2039–2061. [CrossRef] 198. Shiva Kumar, S.; Himabindu, V. Hydrogen production by PEM water electrolysis—A review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [CrossRef] 199. Siracusano,S.;Baglio,V.;VanDijk,N.;Merlo,L.;Aricò,A.S.Enhancedperformanceanddurabilityoflow catalyst loading PEM water electrolyser based on a short-side chain perfluorosulfonic ionomer. Appl. Energy 2017, 192, 477–489. [CrossRef] 200. Wang, R.; Liu, S.; Wang, L.; Li, M.; Gao, C. Understanding of nanophase separation and hydrophilic morphology in Nafion and SPEEK membranes: A combined experimental and theoretical studies. Nanomaterials 2019, 9, 869. [CrossRef] 201. Devanathan, R.; Venkatnathan, A.; Rousseau, R.; Dupuis, M.; Frigato, T.; Gu, W.; Helms, V. Atomistic simulation of water percolation and proton hopping in Nafion fuel cell membrane. J. Phys. Chem. B 2010, 114, 13681–13690. [CrossRef] 202. Sun,C.W.;Hsiau,S.S.EffectofelectrolyteconcentrationdifferenceonhydrogenproductionduringPEM electrolysis. J. Electrochem. Sci. Technol. 2018, 9, 99–108. [CrossRef] 203. Ayers,K.E.;Anderson,E.B.;Capuano,C.B.;Carter,B.D.;Dalton,L.T.;Hanlon,G.;Manco,J.;Niedzwiecki,M. Research advances towards low cost, high efficiency PEM electrolysis. ECS Trans. 2010, 33, 3–15. 204. Schalenbach,M.;Carmo,M.;Fritz,D.L.;Mergel,J.;Stolten,D.PressurizedPEMwaterelectrolysis:Efficiency and gas crossover. Int. J. Hydrog. Energy 2013, 38, 14921–14933. [CrossRef] 205. Rasten, E.; Hagen, G.; Tunold, R. Electrocatalysis in water electrolysis with solid polymer electrolyte. Electrochim. Acta 2003, 48, 3945–3952. [CrossRef] 206. Xu,W.;Scott,K.TheeffectsofionomercontentonPEMwaterelectrolysermembraneelectrodeassembly performance. Int. J. Hydrog. Energy 2010, 35, 12029–12037. [CrossRef] 207. Miles,M.H.;Thomason,M.A.Periodicvariationsofovervoltagesforwaterelectrolysisinacidsolutions from cyclic voltammetric studies. J. Electrochem. Soc. 1976, 123, 1459–1461. [CrossRef] 208. Bessarabov, D.G.; Wang, H.H.; Li, H.; Zhao, N. PEM Electrolysis for Hydrogen Production: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2016. 209. Chisholm,G.;Kitson,P.J.;Kirkaldy,N.D.;Bloor,L.G.;Cronin,L.3Dprintedflowplatesfortheelectrolysisof water: An economic and adaptable approach to device manufacture. Energy Environ. Sci. 2014, 7, 3026–3032. [CrossRef] 210. Mo,J.;Kang,Z.;Retterer,S.T.;Cullen,D.A.;Toops,T.J.;Green,J.B.;Mench,M.M.;Zhang,F.Y.Discoveryof true electrochemical reactions for ultrahigh catalyst mass activity in water splitting. Sci. Adv. 2016, 2, 1–7. [CrossRef] 211. Nikiforov,A.;Petrushina,I.M.;Jensen,J.O.;Bjerrum,N.J.;Christensen,E.AdvancedConstructionMaterials for High Temperature Steam PEM Electrolysers. In Electrolysis; Linkov, V., Kleperis, J., Eds.; IntechOpen: London, UK, 2012; pp. 61–86. 212. Millet, P.; Ngameni, R.; Grigoriev, S.A.; Mbemba, N.; Brisset, F.; Ranjbari, A.; Etiévant, C. PEM water electrolyzers: From electrocatalysis to stack development. Int. J. Hydrog. Energy 2010, 35, 5043–5052. [CrossRef] 213. Stempien,J.P.;Sun,Q.;Chan,S.H.Solidoxideelectrolyzercellmodeling:Areview.J.PowerTechnol.2013,93, 216–246. 214. Wang,Y.;Liu,T.;Lei,L.;Chen,F.HightemperaturesolidoxideH2O/CO2co-electrolysisforsyngasproduction. Fuel Process. Technol. 2017, 161, 248–258. [CrossRef] 215. Bo, Y.; Wenqiang, Z.; Jingming, X.; Jing, C. Status and research of highly efficient hydrogen production through high temperature steam electrolysis at INET. Int. J. Hydrog. Energy 2010, 35, 2829–2835. [CrossRef]

PDF Image | Green Synthetic Fuels

green-synthetic-fuels-071

PDF Search Title:

Green Synthetic Fuels

Original File Name Searched:

energies-13-00420.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP