PDF Publication Title:
Text from PDF Page: 072
Energies 2020, 13, 420 72 of 96 216. Pandiyan, A.; Uthayakumar, A.; Subrayan, R.; Cha, S.W.; Krishna Moorthy, S.B. Review of solid oxide electrolysis cells: A clean energy strategy for hydrogen generation. Nanomater. Energy 2019, 8, 2–22. [CrossRef] 217. Hu,L.;Lindbergh,G.;Lagergren,C.ElectrodekineticsoftheNiOporouselectrodeforoxygenproductionin the molten carbonate electrolysis cell (MCEC). Faraday Discuss. 2015, 182, 493–509. [CrossRef] [PubMed] 218. Brisse,A.;Schefold,J.;Zahid,M.Hightemperaturewaterelectrolysisinsolidoxidecells.Int.J.Hydrog.Energy 2008, 33, 5375–5382. [CrossRef] 219. Laguna-Bercero,M.A.;Skinner,S.J.;Kilner,J.A.Performanceofsolidoxideelectrolysiscellsbasedonscandia stabilised zirconia. J. Power Sources 2009, 192, 126–131. [CrossRef] 220. Ni,M.;Leung,M.K.H.;Leung,D.Y.C.Technologicaldevelopmentofhydrogenproductionbysolidoxide electrolyzer cell (SOEC). Int. J. Hydrog. Energy 2008, 33, 2337–2354. [CrossRef] 221. Han,M.;Tang,X.;Yin,H.;Peng,S.Fabrication,microstructureandpropertiesofaYSZelectrolyteforSOFCs. J. Power Sources 2007, 165, 757–763. [CrossRef] 222. Rathod, S.G.; Bhajantri, R.F.; Ravindrachary, V.; Pujari, P.K.; Nagaraja, G.K.; Naik, J.; Hebbar, V.; Chandrappa, H. Temperature-dependent ionic conductivity and transport properties of LiClO4-doped PVA/modified cellulose composites. Bull. Mater. Sci. 2015, 38, 1213–1221. [CrossRef] 223. Bocanegra-bernal,M.H.;Díazdelatorre,S.Phasetransitionsinzirconiumdioxideandrelatedmaterialsfor high performance engineering ceramics. J. Mater. Sci. 2002, 37, 4947–4971. [CrossRef] 224. Badwal, S.P.S. Zirconia-based solid electrolytes: Microstructure, stability and ionic conductivity. Solid State Ion. 1992, 52, 23–32. [CrossRef] 225. Butler,E.P.;Bonanos,N.ThecharacterizationofZrO2engineeringceramicsbyA.C.impedancespectroscopy. Mater. Sci. Eng. 1985, 71, 49–56. [CrossRef] 226. Kilner,J.A.Fastaniontransportinsolids.SolidStateIon.1983,8,201–207.[CrossRef] 227. Biswas,M.;Sadanala,K.C.Electrolytematerialsforsolidoxidefuelcell.J.PowderMetall.Min.2013,2,10–15. [CrossRef] 228. Ivanov,V.;Shkerin,S.;Rempel,A.;Khrustov,V.;Lipilin,A.;Nikonov,A.Thegrainsizeeffectontheyttria stabilized Zirconia grain boundary conductivity. J. Nanosci. Nanotechnol. 2010, 10, 7411–7415. [CrossRef] [PubMed] 229. Omar,S.DopedCeriaforSolidOxideFuelCells.InCeriumOxide—ApplicationsandAttributes;Khan,S.B., Akhtar, K., Eds.; IntechOpen: London, UK, 2019; p. 17. 230. Artini,C.;Pani,M.;Carnasciali,M.M.;Plaisier,J.R.;Costa,G.A.Lu-,Sm-,andGd-dopedceria:Acomparative approach to their structural properties. Inorg. Chem. 2016, 55, 10567–10579. [CrossRef] [PubMed] 231. Hayashi, H.; Kanoh, M.; Quan, C.J.; Inaba, H.; Wang, S.; Dokiya, M.; Tagawa, H. Thermal expansion of Gd-doped ceria and reduced ceria. Solid State Ion. 2000, 132, 227–233. [CrossRef] 232. Mangalaraja,R.V.;Ananthakumar,S.;Paulraj,M.;Pesenti,H.;López,M.;Camurri,C.P.;Barcos,L.A.;Avila,R.E. Electrical and thermal characterization of Sm3+ doped ceria electrolytes synthesized by combustion technique. J. Alloys Compd. 2011, 510, 134–140. [CrossRef] 233. Wang, D.Y.; Park, D.S.; Griffith, J.; Nowick, A.S. Oxigen-ion conductivity and defect interactions in yttria-doped ceria. Solid State Ion. 1981, 2, 95–105. [CrossRef] 234. Gerhardt,R.;Lee,W.-K.;Nowick,A.S.Anelasticanddielectricrelaxationofscandia-dopedceria.J.Phys. Chem. Solids 1987, 48, 563–569. [CrossRef] 235. Sachdeva,A.;Chavan,S.V.;Goswami,A.;Tyagi,A.K.;Pujari,P.K.Positronannihilationspectroscopicstudies on Nd-doped ceria. J. Solid State Chem. 2005, 178, 2062–2066. [CrossRef] 236. Eguchi,K.;Setoguchi,T.;Inoue,T.;Arai,H.Electricalpropertiesofceria-basedoxidesandtheirapplication to solid oxide fuel cells. Solid State Ion. 1992, 52, 165–172. [CrossRef] 237. Singh, M.; Singh, A.K. Studies on structural, morphological, and electrical properties of Ga3+ and Cu2+ co-doped ceria ceramics as solid electrolyte for IT-SOFCs. Int. J. Hydrog. Energy 2019, 1–12. [CrossRef] 238. Wang,F.Y.;Chen,S.;Cheng,S.Gd3+andSm3+co-dopedceriabasedelectrolytesforintermediatetemperature solid oxide fuel cells. Electrochem. Commun. 2004, 6, 743–746. [CrossRef] 239. Tadokoro,S.K.;Muccillo,E.N.S.EffectofYandDyco-dopingonelectricalconductivityofceriaceramics. J. Eur. Ceram. Soc. 2007, 27, 4261–4264. [CrossRef] 240. Omar,S.;Wachsman,E.D.;Nino,J.C.HigherconductivitySm3+andNd3+co-dopedceria-basedelectrolyte materials. Solid State Ion. 2008, 178, 1890–1897. [CrossRef]PDF Image | Green Synthetic Fuels
PDF Search Title:
Green Synthetic FuelsOriginal File Name Searched:
energies-13-00420.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)