logo

Zeolite modification for direct alcohol fuel cells DAFCs

PDF Publication Title:

Zeolite modification for direct alcohol fuel cells DAFCs ( zeolite-modification-direct-alcohol-fuel-cells-dafcs )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 010

23. J. L. T. Sancho, et al, Microporous and Mesoporous Materials, 206-213 (2008). 24. R. S. S. Cele N., Macromol Mater Eng, 719–738. (2009). 25. E. S. Devrim Y, Baç N,Eroglu I, Int.J.Energy.Res., 435-442 (2013). 26. D. Y. Y. Wang, X. Zheng, Z. Jiang, J. Li, J. Power Sources, 454–463 (2008). 27. B. Libby, W. Smyrl and E. Cussler, AIChE Journal 49 (4), 991-1001 (2003). 28. Z. T. S. Li Y.S., Liang Z.X., J Power Sources 387–392 (2009). 29. K. Matsuoka, Iriyama, Y.,Abe,T.,Matsuoka, M., Ogumi,Z., J Power Sources, 27-31 (2005). 30. G. E. R. Antolini E., J Power Sources, 3431-3450 (2010). 31. K. Matsuoka, Y. Iriyama, T. Abe, M. Matsuoka and Z. Ogumi, Journal of Power Sources 150 (1-2), 27-31 (2005). 32. F. K. Alzate V, Wang H., J Power Sourc, 10625–10631 (2011). 33. D. K. Ramya K, J Electroanal Chem, 109–115 (2003). 34. T. P. Song S, Appl Catal B Environm 187–193 (2006). 35. A. S. Aricò, V. Baglio and V. Antonucci, in Applied Electrochemistry (2011), pp. 1-120. 36. L. g. J. Lamy C, Srinavasan S, in Modern aspect of electrochemistry (Kluwer/Plenum, New York, 2001), pp. 53-118. 37. C. Q. K. Schmidt-Rohr, Nat. Mater, 75–83 (2008). 38. E. S. V.A. Paganin, T. Iwasita, a.W. Vielstich, J. Appl. Electrochem, 1239–1243 (2005). 39. C. X. R. Kumar, K. Scott, RSC Adv, 8777–8782 (2012). 40. W. Z. Shuqin S, et al, Appl Catal B Environm, 65--72 (2005). 41. F. N. Qingfeng Yia, Lizhi Sun, Fuel, 2617–2623 (2011). 42. F. J. N. Q.F. Yi, L.H. Song, X.P. Liu, H.D. Nie, Electroanalysis, 2232-2240 (2011). 43. L. Z. S. Q.F. Yi, X.P. Liu, H.D. Nie, Fuel, 88-95 (2013). 44. H. H. Y. Y. H. Qin, R. L. Lv, W. G. Wang, C. W. Wang, Electrochemica acta, 372– 377 (2013). 45. M. B. Yanxin Chen, ChemSusChem, 524 – 533 (2015). 46. V. S. Silva, A. M. Mendes, L. M. Madeira and S. P. Nunes, Advances in fuel cells (2005). 47. M. Kamarudin, S. K. Kamarudin, M. Masdar and W. R. W. Daud, Int. J. Hydrogen Energy 38 (22), 9438-9453 (2013). 48. H. R. Corti and E. R. Gonzalez, in Direct Alcohol Fuel Cells (Springer, 2014), pp. 1-32. 49. G. E. Molau, J.Membr Sci. 8 (3), 309-330 (1981). 50. I. G. Wenten and Khoiruddin, J.Eng. Sci.Tech.11 (7), 916-934 (2016). 51. T. Xu, J. Membr. Sci.263 (1–2), 1-29 (2005). 52. R. K. Nagarale, G. S. Gohil and V. K. Shahi, Adv.Colloid Interface Sci.119 (2–3), 97-130 (2006). 53. M. Y. Kariduraganavar, R. K. Nagarale, A. A. Kittur and S. S. Kulkarni, Desalination 197 (1), 225-246 (2006). 54. H. Strathmann, Desalination 264 (3), 268-288 (2010). 55. G. Merle, M. Wessling and K. Nijmeijer, Journal of Membrane Science 377 (1–2), 1-35 (2011). 56. H. Strathmann, A. Grabowski and G. Eigenberger, Ind. Eng. Chem. Res. 52 (31), 10364-10379 (2013). 57. Ö. Arar, Ü. Yüksel, N. Kabay and M. Yüksel, Desalination 342 (0), 16-22 (2014). 58. I. G. Wenten, Khoiruddin, F. Arfianto and Zudiharto, Desalination 314, 109-114 (2013). 59. Khoiruddin, I. N. Widiasa and I. G. Wenten, J. Food Eng.133, 40–45 (2014). 60. Khoiruddin, A. Hakim and I. Wenten, Membrane Water Treatment 5 (2), 87-108 (2014). 61. E. Bakangura, L. Wu, L. Ge, Z. Yang and T. Xu, Prog. Poly.Sci.57, 103-152 (2016). 62. C. GrebenyukVD, PetersS,LinkovV., Desalination 115, 313-329 (1998). 63. Y. M. Koshi Kusumoto, Yukio Mizutani, Desalination 17, 303-311 (1975). 64. H. W. Zhang, Chen, D.Z., Xianze, Y., Yin, S.B., Fuel Cells 15, 761-780 (2015). 65. Z. Zakaria, S. K. Kamarudin and S. Timmiati, Applied Energy 163, 334-342 (2016). 66. V. Silva, A. Mendes, L. Madeira and S. Nunes, J J. Membr. Sci. 276 (1), 126-134 (2006). 67. E. Chalkova, M. B. Pague, M. V. Fedkin, D. J. Wesolowski and S. N. Lvov, J. Electrochem. Soc. 152 (6), A1035-A1040 (2005). 68. W. Han, S. M. Kwan and K. L. Yeung, Topics in Catalysis 53 (19-20), 1394-1400 (2010). 69. E. H. Yu and K. Scott, J. Power Sources 137 (2), 248-256 (2004). 70. H.-C. Lee, K.-L. Liu, L.-D. Tsai, J.-Y. Lai and C.-Y. Chao, Rsc Advances 4 (21), 10944-10954 (2014). 71. T. Jurzinsky, C. Cremers, F. Jung, K. Pinkwart and J. Tübke, Int. J. Hydrogen Energy 40 (35), 11569-11576 (2015). 72. A. Huang, C. Xia and C. Xiao, J. Appl. Polym Sci.100 (3), 2248-2251 (2006). 020030-9

PDF Image | Zeolite modification for direct alcohol fuel cells DAFCs

zeolite-modification-direct-alcohol-fuel-cells-dafcs-010

PDF Search Title:

Zeolite modification for direct alcohol fuel cells DAFCs

Original File Name Searched:

zeolite-modification-dafc.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP