logo

19XR,XRV Hermetic Centrifugal Liquid Chillers 50/60 Hz With PIC II Controls and HFC-134a

PDF Publication Title:

19XR,XRV Hermetic Centrifugal Liquid Chillers 50/60 Hz With PIC II Controls and HFC-134a ( 19xrxrv-hermetic-centrifugal-liquid-chillers-50-60-hz-with-p )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 053

Chiller Dehydration — Dehydration is recommended if the chiller has been open for a considerable period of time, if the chiller is known to contain moisture, or if there has been a complete loss of chiller holding charge or refrigerant pressure. Do not start or megohm-test the compressor motor or oil pump motor, even for a rotation check, if the chiller is under dehydration vacuum. Insulation breakdown and severe damage may result. Inside-delta type starters must be disconnected by an isola- tion switch before placing the machine under a vacuum because one lead of each phase is live with respect to ground even though there is not a complete circuit to run the motor. To be safe, isolate any starter before evacuating the chiller if you are not sure if there are live leads to the hermetic motor. Dehydration can be done at room temperatures. Using a cold trap (Fig. 31) may substantially reduce the time required to complete the dehydration. The higher the room temperature, the faster dehydration takes place. At low room temperatures, a very deep vacuum is required to boil off any moisture. If low ambient temperatures are involved, contact a qualified service representative for the dehydration techniques required. Perform dehydration as follows: 1. Connect a high capacity vacuum pump (5 cfm [.002 m3/s] or larger is recommended) to the refrigerant charging valve (Fig. 2). Tubing from the pump to the chiller should be as short in length and as large in diameter as possible to provide least resistance to gas flow. 2. Use an absolute pressure manometer or a wet bulb vacu- um indicator to measure the vacuum. Open the shutoff valve to the vacuum indicator only when taking a read- ing. Leave the valve open for 3 minutes to allow the indi- cator vacuum to equalize with the chiller vacuum. 3. If the entire chiller is to be dehydrated, open all isolation valves (if present). 4. With the chiller ambient temperature at 60 F (15.6 C) or higher, operate the vacuum pump until the manometer reads 29.8 in. Hg vac, ref 30 in. bar. (0.1 psia) (–100.61 kPa) or a vacuum indicator reads 35 F (1.7 C). Operate the pump an additional 2 hours. Do not apply a greater vacuum than 29.82 in. Hg vac (757.4 mm Hg) or go below 33 F (.56 C) on the wet bulb vacuum indicator. At this temperature and pressure, iso- lated pockets of moisture can turn into ice. The slow rate of evaporation (sublimation) of ice at these low tempera- tures and pressures greatly increases dehydration time. 5. Valve off the vacuum pump, stop the pump, and record the instrument reading. 6. After a 2-hour wait, take another instrument reading. If the reading has not changed, dehydration is complete. If the reading indicates vacuum loss, repeat Steps 4 and 5. 7. If the reading continues to change after several attempts, perform a leak test up to the maximum 160 psig (1103 kPa) pressure. Locate and repair the leak, and re- peat dehydration. Fig. 31 — Dehydration Cold Trap Inspect Water Piping — Refer to piping diagrams pro- vided in the certified drawings and the piping instructions in the 19XR Installation Instructions manual. Inspect the piping to the cooler and condenser. Be sure that the flow directions are correct and that all piping specifications have been met. Piping systems must be properly vented with no stress on waterbox nozzles and covers. Water flows through the cooler and condenser must meet job requirements. Measure the pres- sure drop across the cooler and the condenser. Check Optional Pumpout Compressor Water Piping—If the optional pumpout storage tank and/or pumpout system are installed, check to ensure the pumpout condenser water has been piped in. Check for field-supplied shutoff valves and controls as specified in the job data. Check for refrigerant leaks on field-installed piping. See Fig. 29 and 30. Check Relief Valves — Be sure the relief valves have been piped to the outdoors in compliance with the latest edition of ANSI/ASHRAE Standard 15 and applicable local safety codes. Piping connections must allow for access to the valve mechanism for periodic inspection and leak testing. The 19XR relief valves are set to relieve at the 185 psig (1275 kPa) chiller design pressure. Inspect Wiring Water must be within design limits, clean, and treated to ensure proper chiller performance and to reduce the poten- tial of tube damage due to corrosion, scaling, or erosion. Carrier assumes no responsibility for chiller damage result- ing from untreated or improperly treated water. Do not check the voltage supply without proper equipment and precautions. Serious injury may result. Follow power company recommendations. 53 Do not apply any kind of test voltage, even for a rotation check, if the chiller is under a dehydration vacuum. Insula- tion breakdown and serious damage may result. 1. Examine the wiring for conformance to the job wiring di- agrams and all applicable electrical codes.

PDF Image | 19XR,XRV Hermetic Centrifugal Liquid Chillers 50/60 Hz With PIC II Controls and HFC-134a

19xrxrv-hermetic-centrifugal-liquid-chillers-50-60-hz-with-p-053

PDF Search Title:

19XR,XRV Hermetic Centrifugal Liquid Chillers 50/60 Hz With PIC II Controls and HFC-134a

Original File Name Searched:

19xr_4ss_Startup_PICII.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP