logo

Performance analysis and working fluid selection for geothermal energy-powered organic Rankine-vapor compression air conditioning

PDF Publication Title:

Performance analysis and working fluid selection for geothermal energy-powered organic Rankine-vapor compression air conditioning ( performance-analysis-and-working-fluid-selection-geothermal- )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 008

Bu et al. Geothermal Energy 2013, 1:2 www.geothermal-energy-journal.com/content/1/1/2 Page 8 of 14 36 30 24 18 12 70 75 80 85 90 95 R123 R600a R134a R600 R245fa R290 Figure 5 Effect of Th on SP. Th (oC) proportional to the actual expander size (Lakew and Bolland 2010; Stijepovic et al. 2012). As shown in Figure 5, SP decreases with increasing Th for all working fluids, and this is attributed to the fact that higher Th leads to higher enthalpy drop between the expander inlet and outlet as well as higher ηp and thus less SP according to Equation 9. As it is seen from Figure 5, SP is lowest for R134a for all heat source temperatures compared with the five other working fluids and R290 is the second lowest. This is likely due to the fact that compared with the four other working fluids, R134a and R290 have higher pressure and thus higher density at the expander outlet, resulting in lower V3 and thus lower SP according to Equation 9. Based on the above discussion, it is thus clear that in terms of ηp and SP, R290 and R134a are more suitable working fluids for ORC for recovering low-grade waste heat. However, the system pressures for working fluids R290 and R134a are also high, reaching 2,116 and 1,682 kPa, respectively, at Tboi = 60°C, resulting in high system in- vestment. Except R290 and R134a, R600a is superior to R600, R123 and R245fa in terms of ηp and SP. Moreover, the system pressures for R600a is also not high, reaching 868.3 kPa at Tboi = 60°C. To sum up the above discussion, R600a is the most suitable among the six selected working fluids for ORC for recovering low-grade waste heat in the temperature range of 70°C to 95°C. Effect of working fluid types on VCC The condensation temperature varies with ambient. Table 2 shows the effects of Tc and working fluid types on COPc, PR and CRPR. In Table 2, Th equals 85°C. As shown in Table 2, COPc, PR and CRPR depend largely on Tc, COPc and CRPR decrease with Tc, and PR increases with Tc. This is due to the fact that when the pressure and tem- perature remain invariable at the compressor inlet, the increasing Tc leads to the in- crease of pressure and enthalpy at the compressor outlet and thus the increase of PR and the decrease of COPc as well as CRPR according to Equations 11 to 15. SP (mm)

PDF Image | Performance analysis and working fluid selection for geothermal energy-powered organic Rankine-vapor compression air conditioning

performance-analysis-and-working-fluid-selection-geothermal--008

PDF Search Title:

Performance analysis and working fluid selection for geothermal energy-powered organic Rankine-vapor compression air conditioning

Original File Name Searched:

2195_9706_1_2.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP