logo

Water and Energy

PDF Publication Title:

Water and Energy ( water-and-energy )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 033

1.2 Differences and divergences In the simplest of terms, water is a renewable natural resource that is unique, irreplaceable and difficult (as well as costly) to move, beyond the pull of gravity. Energy, in contrast, comes in different forms, which can be derived from a variety of sources. It is typically a market-driven commodity and can be distributed across vast distances (e.g. via transmission lines for electricity or pipelines for fuels). When considering water’s role in the nexus, it is necessary to distinguish between water resources and water services, and how both are managed. Water resources management is about managing the water cycle, in which water flows as a natural resource through the environment (i.e. rivers, lakes, estuaries and other water bodies, soils and aquifers), in terms of quantity and quality. Water services management is about developing and managing infrastructure to capture, treat as necessary, transport and deliver water to the end user, and to capture the waste streams via reticulation for treatment and safe onwards discharge or reuse. Whereas energy is required mainly for the provision of water services, water resources are required in the production of energy. Unlike water, energy can come in different forms and can be produced in several ways, each having a distinct requirement for – and impact on – water resources. Thus, as a country’s or region’s energy mix evolves, say from fossil fuels to renewables, so do the implications for water and its supporting ecosystem services. countries, local farmers make day-to-day decisions about well pumping for irrigation and national/federal control over water uses is weak, while centrally managed power systems are used for distributing electricity. In addition to a mismatch in the regulatory and policy systems of water and energy, there is also a mismatch in the size of infrastructure. With the exception of large dams, reservoirs and inter-basin water diversion schemes, water infrastructure systems are usually at the community or city scale (for piped drinking water and sewerage systems). Energy infrastructure, including pipeline networks and the power grid, usually spans the entire nation or several nations. This mismatch can introduce vulnerabilities to both systems. Water resources and water services systems span several geographic scales. While the piped water system is usually at the municipal scale, surface water can span thousands of kilometres, threading through many cities and crossing many political and national boundaries. The transboundary character of natural surface water systems complicates allocation decisions, as multiple government bodies might need to coordinate their actions across different regulatory frameworks and Whereas energy is required mainly for the provision of water services, water resources are required in the production of energy In general, regulation and legislation regarding energy focuses on production and distribution, whereas for water the focus is mainly on extraction, use and discharge (Section 8.4.5). In most countries, approaches to energy decision-making and regulation are top-down, with strong national/federal or provincial/state governmental policies and central administration of many standards and funding. Water management is usually a combination of bottom-up and top-down approaches. National/federal water management can be responsible for managing large infrastructure such as major reservoir projects that serve as storage for irrigation and power generation as well as ensuring water allotments across international/interjurisdictional boundaries. However, the uses of that water are often determined locally, and local water management can be very powerful (for more on the governance of water, see WWAP, 2003 [ch. 15], 2006 [ch. 2], 2009 [chs. 14, 15], 2012 [pt. 2]). In most political systems. Because the original source of water might be far away, significant energy investments are typically required to deliver water resources and services to consumers. Groundwater can also span large regions, further complicating matters. In some regions, laws and international agreements governing groundwater (when they exist) can be different than those for surface water. In contrast, the power grid and pipeline network does not follow natural boundaries such as river basins. Energy can be moved relatively easily: electricity is transmitted readily via power lines, and dense fossil fuels such as petroleum, coal and liquefied natural gas are shipped across oceans or transported across continents by pipelines or railways. While water can be moved via inter-basin transfer, because of water’s high WWDR 2014 THE WATER–ENERGY NEXUS 17

PDF Image | Water and Energy

water-and-energy-033

PDF Search Title:

Water and Energy

Original File Name Searched:

225741e.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP