logo

Biomass Combined Heat and Power Catalog of Technologies

PDF Publication Title:

Biomass Combined Heat and Power Catalog of Technologies ( biomass-combined-heat-and-power-catalog-technologies )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 041

EPA Combined Heat and Power Partnership Biomass CHP Catalog Modular systems employ some of the same technologies mentioned above, but on a smaller scale that is more applicable to farms, institutional buildings, and small industry. A number of modular systems are now under development and could be most useful in remote areas where biomass is abundant and electricity is scarce. 5.1 Direct-Fired Systems The most common utilization of solid fuel biomass is direct combustion with the resulting hot flue gases producing steam in a boiler—a technology that goes back to the 19th century. Boilers today burn a variety of fuels and continue to play a major role in industrial process heating, commercial and institutional heating, and electricity generation. Boilers are differentiated by their configuration, size, and the quality of the steam or hot water produced. Boiler size is most often measured by the fuel input in MMBtu per hour (MMBtu/hr), but it may also be measured by output in pounds of steam per hour. Because large boilers are often used to generate electricity, it can also be useful to relate boiler size to power output in electric generating applications. Using typical boiler and steam turbine generating efficiencies, 100 MMBtu/hr heat input provides about 10 MW electric output. The two most commonly used types of boilers for biomass firing are stoker boilers and fluidized bed boilers. Either of these can be fueled entirely by biomass fuel or cofired with a combination of biomass and coal. The efficiency, availability, operating issues, equipment and installed costs, O&M requirements and costs, and commercial status of each of these options are discussed below. 5.1.1 Boilers Characterization Stoker Boilers Stoker boilers employ direct fire combustion of solid fuels with excess air, producing hot flue gases, which then produce steam in the heat exchange section of the boiler. The steam is used directly for heating purposes or passed through a steam turbine generator to produce electric power. Stoker-fired boilers were first introduced in the 1920s for coal; in the late 1940s the Detroit Stoker Company installed the first traveling grate spreader stoker boiler for wood. Mechanical stokers are the traditional technology that has been used to automatically supply solid fuels to a boiler. All stokers are designed to feed fuel onto a grate where it burns with air passing up through it. The stoker is located within the furnace section of the boiler and is designed to remove the ash residue after combustion. Stoker units use mechanical means to shift and add fuel to the fire that burns on and above the grate located near the base of the boiler. Heat is transferred from the fire and combustion gases to water tubes on the walls of the boiler. Modern mechanical stokers consist of four elements, 1) a fuel admission system, 2) a stationary or moving grate assembly that supports the burning fuel and provides a pathway for the primary combustion air, 3) an overfire air system that supplies additional air to complete combustion and minimize atmospheric emissions, and 4) an ash discharge system. Figure 5-1 illustrates the different sections of a stoker boiler. A successful stoker installation requires selecting the correct size and type of stoker for the fuel being used and for the load conditions and capacity being served. Stoker boilers are typically described by their method of adding and distributing fuel. There are two general types of systems—underfeed and overfeed. Underfeed stokers supply both the fuel and air from under the grate, while overfeed stokers supply fuel from above the grate and air from below. Overfeed stokers are further divided into two types—mass feed and spreader. In the mass feed stoker, fuel is continuously fed onto one end of the grate 5. Biomass Conversion Technologies 31

PDF Image | Biomass Combined Heat and Power Catalog of Technologies

biomass-combined-heat-and-power-catalog-technologies-041

PDF Search Title:

Biomass Combined Heat and Power Catalog of Technologies

Original File Name Searched:

biomass_chp_catalog.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP