Geothermal Energy 4

PDF Publication Title:

Geothermal Energy 4 ( geothermal-energy-4 )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 005

Chapter 4 Geothermal Energy damage, but proper management of this issue will be an important step to facilitating significant expansion of future EGS projects. Several prospects exist for technology improvement and innovation in geothermal systems. Technical ad- vancements can reduce the cost of producing geothermal energy and lead to higher energy recovery, longer field and plant lifetimes, and better reliability. In exploration, research and development (R&D) is required for hidden geothermal systems (i.e., with no surface manifestations such as hot springs and fumaroles) and for EGS prospects. Special research in drilling and well construction technology is needed to reduce the cost and increase the useful life of geothermal pro- duction facilities. EGS require innovative methods to attain sustained, commercial production rates while reducing the risk of seismic hazard. Integration of new power plants into existing power systems does not present a major challenge, but in some cases can require extending the transmission network. Geothermal-electric projects have relatively high upfront investment costs but often have relatively low levelized costs of electricity (LCOE). Investment costs typically vary between USD2005 1,800 and 5,200 per kW, but geothermal plants have low recurring ‘fuel costs’. The LCOE of power plants using hydrothermal resources are often competitive in today’s electricity markets, with a typical range from US cents2005 4.9 to 9.2 per kWh considering only the range in investment costs provided above and medium values for other input parameters; the range in LCOE across a broader array of input parameters is US cents2005 3.1 to 17 per kWh. These costs are expected to decrease by about 7% by 2020. There are no actual LCOE data for EGS power plants, as EGS plants remain in the demonstration phase, but estimates of EGS costs are higher than those for hydrothermal reservoirs. The cost of geothermal energy from EGS plants is also expected to decrease by 2020 and beyond, assuming improvements in drilling technologies and success in developing well-stimulation technology. Current levelized costs of heat (LCOH) from direct uses of geothermal heat are generally competitive with market energy prices. Investment costs range from USD2005 50 per kWth (for uncovered pond heating) to USD2005 3,940 per kWth (for building heating). Low LCOHs for these technologies are possible because the inherent losses in heat-to- electricity conversion are avoided when geothermal energy is used for thermal applications. Future geothermal deployment could meet more than 3% of global electricity demand and about 5% of the global demand for heat by 2050. Evidence suggests that geothermal supply could meet the upper range of projec- tions derived from a review of about 120 energy and GHG reduction scenarios summarized in Chapter 10. With its natural thermal storage capacity, geothermal energy is especially suitable for supplying base-load power. By 2015, geo- thermal deployment is roughly estimated to generate 122 TWhe/yr (0.44 EJ/yr) for electricity and 224 TWhth/yr (0.8 EJ/yr) for heat applications. In the long term (by 2050), deployment projections based on extrapolations of long-term histori- cal growth trends suggest that geothermal could produce 1,180 TWhe/yr (~4.3 EJ/yr) for electricity and 2,100 TWhth/yr (7.6 EJ/yr) for heat, with a few countries obtaining most of their primary energy needs (heating, cooling and electricity) from geothermal energy. Scenario analysis suggests that carbon policy is likely to be one of the main driving factors for future geothermal development, and under the most favourable climate policy scenario (<440 ppm atmospheric CO2 concentration level in 2100) considered in the energy and GHG scenarios reviewed for this report, geothermal deploy- ment could be even higher in the near and long term. High-grade geothermal resources have restricted geographic distribution—both cost and technology barri- ers exist for the use of low-grade geothermal resources and EGS. High-grade geothermal resources are already economically competitive with market energy prices in many locations. However, public and private support for research along with favourable deployment policies (drilling subsidies, targeted grants for pre-competitive research and dem- onstration to reduce exploration risk and the cost of EGS development) may be needed to support the development of lower-grade hydrothermal resources as well as the demonstration and further commercialization of EGS and other geothermal resources. The effectiveness of these efforts may play a central role in establishing the magnitude of geo- thermal energy’s contributions to long-term GHG emissions reductions. 405

PDF Image | Geothermal Energy 4

PDF Search Title:

Geothermal Energy 4

Original File Name Searched:

Chapter_4_Geothermal_Energy_.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)