Electrochemical Conversion of CO2

PDF Publication Title:

Electrochemical Conversion of CO2 ( electrochemical-conversion-co2 )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 008

The ECFORM Process A schematic diagram of the ECFORM process is shown in Figure 4. It consists of two electrodes, the cathode (negative electrode) and the anode (positive electrode), across which an electrical voltage is applied. The two electrodes are placed in two different chambers, separated from each other by an ion exchange membrane. This prevents bulk mixing of the solutions flowing in each of the chambers, while simultaneously allowing ions to move across the membrane and maintain electrical continuity. A suitable electrolyte is introduced into the cathode chamber along with CO2. The electrolyte comes into contact with the cathode, and the dissolved CO2 is electrochemically reduced to the desired products. This electrical circuit is completed by the complementary oxidation reaction occurring in the anode chamber. In ECFORM, tin or proprietary tin-based alloys are used as the cathodes that convert CO2 to formate salts. Small concentrations of by- products (hydrogen and CO) are also produced at the cathode. An oxygen evolution reaction takes place at the anode. An important metric of the process is the energy consumption, which is determined by the number of electrons (n) involved in reducing 1 molecule of CO2 to products, cell voltage, and the current efficiency, also called Faraday efficiency (FE). The FE denotes the percentage of the total current used for the desired product (i.e., the selectivity). The calculations in Figure 5 include additional energy consumed by auxiliary components, such as pumps. As shown in Figure 5, the reduction of CO2 to formate/ formic acid and to carbon monoxide, respectively, appears to be the best option for practical development for at least two reasons. First, both reactions involve the participation of only two electrons, and therefore the electrical power consumption is the lowest. Secondly, the high FE of CO and formate/formic acid reactions have been achieved on affordable metal cathodes, further minimizing the energy consumption and cost. The next promising reaction may be the production of methanol. Although this involves 6 electrons for each molecule of methanol formed, the low over potentials on the catalysts reduce the cell potential to nearly half of that for other electrochemical processes. Thus, relatively lower specific energy consumption can also be achieved. An economically viable electrochemical technology requires optimization of four key parameters (Figure 6): high current densities, high FE, low specific electricity consumption, and long electrode lifetime. The minimum Figure 4. A schematic representation of the ECFORM process to convert CO2 to formate/formic acid. 8

PDF Image | Electrochemical Conversion of CO2

PDF Search Title:

Electrochemical Conversion of CO2

Original File Name Searched:

dnv_position_paper_co2_utilization_tcm4_445820.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)