logo

SUSTAINABLE WORLD ENERGY OUTLOOK

PDF Publication Title:

SUSTAINABLE WORLD ENERGY OUTLOOK ( sustainable-world-energy-outlook )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 009

figure 9.5 figure 9.6 figure 9.7 figure 9.8 figure 9.9 figure 9.10 figure 9.11 figure 9.12 figure 9.13 figure 9.14 figure 9.15 figure 9.16 figure 9.17 figure 9.18 figure 9.19 figure 9.20 figure 9.21 figure 9.22 figure 9.23 figure 9.24 figure 9.25 figure 9.26 10 figure 10.1 figure 10.2 figure 10.3 figure 10.4 figure 10.5 figure 10.6 figure 10.7 figure 10.8 figure 10.9 figure 10.10 figure 10.11 figure 10.12 figure 10.13 figure 10.14 figure 10.15 figure 10.16 figure 10.17 figure 10.18 figure 10.19 basic components of a modern horizontal axis wind turbine with a gear box 240 growth in size of typical commercial wind turbines 240 biogas technology geothermal energy schematic diagram of a geothermal condensing steam power plant and a binary cycle power plant scheme showing conductive EGS resources run-of-river hydropower plant typical hydropower plant with resevoir 246 typical pumped storage project 247 typical in-stream hydropower project using existing facilities wave energy technologies: classification based on principles of operation oscillating water columns oscillating body systems overtopping devices 249 classification of current tidal and ocean energy technologies (principles of operation) 250 twin turbine horizontal axis device 250 cross flow device 250 vertical axis device 251 natural flow systems vs. forced circulation systems 252 examples for heat pump systems 255 overview storage capacity of different energy storage systems 259 renewable (power) (to) methane - renewable gas 259 final energy demand (PJ) in reference scenario per sector worldwide 261 final energy demand (PJ) in reference scenario per region 262 final energy demand per capita in reference scenario 262 final energy demand for the world by sub sector and fuel source in 2009 262 projection of industrial energy demand in period 2009-2050 per region 263 share of industry in total final energy demand per region in 2009 and 2050 263 breakdown of final energy consumption in 2009 by sub sector for industry 263 global final energy use in the period 2009-2050 in industry 265 final energy use in sector industries 265 fuel/heat use in sector industries 265 electricity use in sector industries 265 breakdown of energy demand in buildings and agriculture in 2009 266 energy demand in buildings and agriculture in reference scenario per region 266 share electricity and fuel consumption by buildings and agriculture in total final energy demandin2009and2050inthereferencescenario 266 breakdown of final energy demand in buildings in 2009 for electricity and fuels/heat in ‘others’ 267 breakdown of fuel and heat use in ‘others’ in 2009 267 elements of new building design that can substantially reduce energy use 268 breakdown of electricity use by sub sector in sector ‘others’ in 2009 269 efficiency in households - electricity demand per capita 270 figure 10.20 figure 10.21 figure 10.22 figure 10.23 figure 10.24 figure 10.25 11 figure 11.1 figure 11.2 figure 11.3 figure 11.4 figure 11.5 figure 11.6 figure 11.7 figure 11.8 figure 11.9 figure 11.10 figure 11.11 figure 11.12 figure 11.13 figure 11.14 figure 11.15 figure 11.16 figure 11.17 figure 11.18 figure 11.19 figure 11.20 figure 11.21 figure 11.22 figure 11.23 figure 11.24 figure 11.25 figure 11.26 figure 11.26 electricity savings in households (E[R] vs. Ref) in 2050 271 breakdown of energy savings in BLUE Map scenario for sector ‘others’ 272 global final energy use in the period 2009-2050 in sector ‘others’ 274 final energy use i sector ‘others’ 274 fuel/heat use in sector ‘others’ 274 electricity use in sector ‘others’ 274 world final energy use per transport mode 2009/2050 - reference scenario 277 world transport final energy use by region 2009/2050 - reference scenario 277 world average (stock-weighted) passenger transport energy intensity for 2009 and 2050 279 aviation passenger-km in the reference and energy [r]evolution scenarios 280 rail passenger-km in the reference and energy [r]evolution scenarios 280 passenger-km over time in the reference scenario 280 passenger-km over time in the energy [r]evolution scenario 280 world average (stock-weighted) freight transport energy intensities for 2005 and 2050 281 tonne-km over time in the reference scenario 281 tonne-km over time in the energy [r]evolution scenario 281 energy intensities (Mj/p-km) for air transport in the energy [r]evolution scenario 282 fuel share of electric and diesel rail traction for passenger transport 283 fuel share of electric and diesel rail traction for freight transport 283 energy intensities for passenger rail transport in the energy [r]evolution scenario 284 energy intensities for freight rail transport in the energy [r]evolution scenario 284 HDV operating fully electrically under a catenary 284 fuel share of medium duty vehicles (global average) by transport performance (ton-km) 285 fuel share of heavy duty vehicles (global average) by transport performance (ton-km) 285 specific energy consumption of HDV and MDV in litres of gasoline equivalent per 100 tkm in 2050 285 energy intensities for freight rail transport in the energy [r]evolution scenario 287 LDV occupancy rates in 2009 and in the energy [r]evolution 2050 287 sales share of conventional ICE, autonomous hybrid and grid-connectable vehicles in 2050 288 vehicle sales by segment in 2009 and 2050 in the energy [r]evolution scenario 288 fuel split in vehicle sales for 2050 energy [r]evolution by world region 289 development of the global LDV stock under the reference scenario 289 development of the global LDV stock under the energy [r]evolution scenario 289 average annual LDV kilometres driven per world region 290 242 243 244 245 246 247 248 249 249 image NORTH HOYLE WIND FARM, UK’S FIRST WIND FARM IN THE IRISH SEA WHICH WILL SUPPLY 50,000 HOMES WITH POWER. 9 © ANTHONY UPTON 2003

PDF Image | SUSTAINABLE WORLD ENERGY OUTLOOK

sustainable-world-energy-outlook-009

PDF Search Title:

SUSTAINABLE WORLD ENERGY OUTLOOK

Original File Name Searched:

ER2012.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP