logo

SUSTAINABLE WORLD ENERGY OUTLOOK

PDF Publication Title:

SUSTAINABLE WORLD ENERGY OUTLOOK ( sustainable-world-energy-outlook )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 034

WORLD ENERGY [R]EVOLUTION A SUSTAINABLE WORLD ENERGY OUTLOOK 2 2.3.2 smart grids The task of integrating renewable energy technologies into existing power systems is similar in all power systems around the world, whether they are large centralised networks or island systems.The main aim of power system operation is to balance electricity consumption and generation. Thorough forward planning is needed to ensure that the available production can match demand at all times. In addition to balancing supply and demand, the power system must also be able to: • Fulfil defined power quality standards – voltage/frequency - which may require additional technical equipment, and • Survive extreme situations such as sudden interruptions of supply, for example from a fault at a generation unit or a breakdown in the transmission system. Integrating renewable energy by using a smart grid means moving away from the concept of baseload power towards a mix of flexible and dispatch able renewable power plants. In a smart grid a portfolio of flexible energy providers can follow the load during both day and night (for example, solar plus gas, geothermal, wind and demand management) without blackouts. What is a smart grid? Until now renewable power technology development has put most effort into adjusting its technical performance to the needs of the existing network, mainly by complying with grid codes, which cover such issues as voltage frequency and reactive power. However, the time has come for the power systems themselves to better adjust to the needs of variable generation.This means that they must become flexible enough to follow the fluctuations of variable renewable power, for example by adjusting demand via demand-side management and/or deploying storage systems. The future power system will consist of tens of thousands of generation units such as solar panels, wind turbines and other renewable generation, partly distributed in the distribution network, partly concentrated in large power plants such as offshore wind parks.The power system planning will become more complex due to the larger number of generation assets and the significant share of variable power generation causing constantly changing power flows. Smart grid technology will be needed to support power system planning.This will operate by actively supporting day-ahead forecasts and system balancing, providing real-time information about the status of the network and the generation units, in combination with weather forecasts. It will also play a significant role in making sure systems can meet the peak demand and make better use of distribution and transmission assets, thereby keeping the need for network extensions to the absolute minimum. references 21 SEE ALSO ECOGRID PHASE 1 SUMMARY REPORT, AVAILABLE AT: HTTP://WWW.ENERGINET.DK/NR/RDONLYRES/8B1A4A06-CBA3-41DA-9402- B56C2C288FB0/0/ECOGRIDDK_PHASE1_SUMMARYREPORT.PDF. 22 SEE ALSO HTTP://WWW.KOMBIKRAFTWERK.DE/INDEX.PHP?ID=27. 23 SEE ALSO HTTP://WWW.SOLARSERVER.DE/SOLARMAGAZIN/ANLAGEJANUAR2008_E.HTML. To develop a power system based almost entirely on renewable energy sources requires a completely new power system architecture, which will need substantial amounts of further work to fully emerge.21 Figure 2.3 shows a simplified graphic representation of the key elements in future renewable-based power systems using smart grid technology. A range of options are available to enable the large-scale integration of variable renewable energy resources into the power supply system. Some features of smart grids could be: Managing level and timing of demand for electricity. Changes to pricing schemes can give consumers financial incentives to reduce or shut off their supply at periods of peak consumption, as system that is already used for some large industrial customers. A Norwegian power supplier even involves private household customers by sending them a text message with a signal to shut down. Each household can decide in advance whether or not they want to participate. In Germany, experiments are being conducted with time flexible tariffs so that washing machines operate at night and refrigerators turn off temporarily during periods of high demand. Advances in communications technology. In Italy, for example, 30 million ‘smart meters’ have been installed to allow remote meter reading and control of consumer and service information. Many household electrical products or systems, such as refrigerators, dishwashers, washing machines, storage heaters, water pumps and air conditioning, can be managed either by temporary shut-off or by rescheduling their time of operation, thus freeing up electricity load for other uses and dovetailing it with variations in renewable supply. Creating Virtual Power Plants (VPP). Virtual power plants interconnect a range of real power plants (for example solar, wind and hydro) as well as storage options distributed in the power system using information technology. A real life example of a VPP is the Combined Renewable Energy Power Plant developed by three German companies.22 This system interconnects and controls 11 wind power plants, 20 solar power plants, four CHP plants based on biomass and a pumped storage unit, all geographically spread around Germany. The VPP monitors (and anticipates through weather forecasts) when the wind turbines and solar modules will be generating electricity. Biogas and pumped storage units are used to make up the difference, either delivering electricity as needed in order to balance short term fluctuations or temporarily storing it.23 Together the combination ensures sufficient electricity supply to cover demand. Electricity storage options. Pumped storage is the most established technology for storing energy from a type of hydroelectric power station. Water is pumped from a lower elevation reservoir to a higher elevation during times of low cost, off-peak electricity. During periods of high electrical demand, the stored water is released through turbines.Taking into account evaporation losses from the exposed water surface and conversion losses, roughly 70 to 85% of the electrical energy used to pump the water into the elevated reservoir can be regained when it is released. Pumped storage plants can also respond to changes in the power system load demand within seconds. Pumped storage has been successfully used for many decades all over the world. 34 the energy [r]evolution concept | THE NEW ELECTRICITY GRID

PDF Image | SUSTAINABLE WORLD ENERGY OUTLOOK

sustainable-world-energy-outlook-034

PDF Search Title:

SUSTAINABLE WORLD ENERGY OUTLOOK

Original File Name Searched:

ER2012.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP