logo

About ElectraTherm

PDF Publication Title:

About ElectraTherm ( about-electratherm )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 013

EXECUTIVE SUMMARY In June 2004, delegates from 154 countries converged in Bonn, Germany, for the world’s first government-hosted international conference on renewable energy. REN21 emerged from that process to become the first international organisation to track renewable energy developments. At that time, there were visible upwards trends in global renewable energy capacity and output, investment, policy support, investment, and integration. Yet even ambitious projections did not anticipate the extraordinary expansion of renewables that was to unfold over the decade ahead. Global perceptions of renewable energy have shifted considerably since 2004. Over the last 10 years, continuing technology advances and rapid deployment of many renewable energy technologies have demonstrated that their potential can be achieved. Renewables advanced further towards realising that potential during 2013. ■■CONTINUED RENEWABLE ENERGY GROWTH Renewable energy provided an estimated 19% of global final energy consumption in 2012,i and continued to grow in 2013. Of this total share in 2012, modern renewables accounted for approximately 10%, with the remainder (estimated at just over 9%) coming from traditional biomass.ii Heat energy from modern renewable sources accounted for an estimated 4.2% of total final energy use; hydropower made up about 3.8%, and an estimated 2% was provided by power from wind, solar, geothermal, and biomass, as well as by biofuels. The combined modern and traditional renewable energy share remained about level with 2011, even as the share of modern renewables increased. This is because the rapid growth in modern renewable energy is tempered by both a slow migration away from traditional biomass and a continued rise in total global energy demand. As renewable energy markets and industries mature, they increasingly face new and different challenges, as well as a wide range of opportunities. In 2013, renewables faced declining policy support and uncertainty in many European countries and the United States. Electric grid-related constraints, opposition in some countries from electric utilities concerned about rising competition, and continuing high global subsidies for fossil fuels were also issues. Overall—with some exceptions in Europe and the United States—renewable energy developments were positive in 2013. Markets, manufacturing, and investment expanded further across the developing world, and it became increasingly evident that renewables are no longer dependent upon a small handful of countries. Aided by continuing technological advances, falling prices, and innovations in financing—all driven largely by policy support—renewables have become increasingly affordable for a broader range of consumers worldwide. In a rising number of countries, renewable energy is considered crucial for meeting current and future energy needs. i - Note that it is not possible to provide 2013 shares due to a lack of data. As markets have become more global, renewable energy industries have responded by increasing their flexibility, diversifying their products, and developing global supply chains. Several industries had a difficult year, with consolidation continuing, particularly for solar energy and wind power. But the picture brightened by the end of 2013, with many solar photovoltaics (PV) and wind turbine manufacturers returning to profitability. The most significant growth occurred in the power sector, with global capacity exceeding 1,560 gigawatts (GW), up more than 8% over 2012. Hydropower rose by 4% to approximately 1,000 GW, and other renewables collectively grew nearly 17% to more than 560 GW. For the first time, the world added more solar PV than wind power capacity; solar PV and hydropower were essentially tied, each accounting for about one-third of new capacity. Solar PV has continued to expand at a rapid rate, with growth in global capacity averaging almost 55% annually over the past five years. Wind power has added the most capacity of all renewable technologies over the same period. In 2013, renewables accounted for more than 56% of net additions to global power capacity and represented far higher shares of capacity added in several countries. Over the past few years, the levelised costs of electricity generation from onshore wind and, particularly, solar PV have fallen sharply. As a result, an increasing number of wind and solar power projects are being built without public financial support. Around the world, major industrial and commercial customers are turning to renewables to reduce their energy costs while increasing the reliability of their energy supply. Many set ambitious renewable energy targets, installed and operated their own renewable power systems, or signed power purchase agreements to buy directly from renewable energy project operators, bypassing utilities. By the end of 2013, China, the United States, Brazil, Canada, and Germany remained the top countries for total installed renewable power capacity; the top countries for non-hydro capacity were again China, the United States, and Germany, followed by Spain, Italy, and India. Among the world’s top 20 countries for non-hydro capacity, Denmark had a clear lead for total capacity per capita. Uruguay, Mauritius, and Costa Rica were among the top countries for investment in new renewable power and fuels relative to annual GDP. In the heating and cooling sector, trends included the increasing use of renewables in combined heat and power plants; the feeding of renewable heating and cooling into district systems; hybrid solutions in the building renovation sector; and the growing use of renewable heat for industrial purposes. Heat from modern biomass, solar, and geothermal sources accounts for a small but gradually rising share of final global heat demand, amounting to an estimated 10%. The use of modern renewable technologies for heating and cooling is still limited relative to their vast potential. ii - Note that there is debate about the sustainability of traditional biomass, and whether it should be considered renewable, or renewable only if it comes from a sustainable source. RENEWABLES 2014 GLOBAL STATUS REPORT 13

PDF Image | About ElectraTherm

about-electratherm-013

PDF Search Title:

About ElectraTherm

Original File Name Searched:

gsr2014_full_report_low_res.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP