Performance of a Combined Organic Rankine Cycle

PDF Publication Title:

Performance of a Combined Organic Rankine Cycle ( performance-combined-organic-rankine-cycle )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 004

1. Introduction Energy consumption continues to grow due to population increases and expanding economies around the world. There have been several consequences to these trends; two prominent ones are increasing energy costs and global warming. Unfortunately, while the demand for more energy continues to grow, its scarcity increases. In order to meet the future worldwide energy needs and slow the pace of global warming, the creation of sustainable energy sources and the improvement of energy efficiency have to be addressed simultaneously. In recent years renewable energy sources such as solar, wind, and geothermal have played increasingly important roles in satisfying energy needs. One method enjoying a resurgence of interest in harnessing thermal sources of renewable energy is the organic Rankine cycle (ORC), which can utilize low-to-moderate grade heat. Resources including geothermal, solar thermal, and waste heat fall into this category for the purposes of power generation [1-9]. ORC technology has proven to be economical and reliable for using thermal sources as low as 80°C [2, 3]. One interesting application that has gained attention recently involves using an organic Rankine cycle to produce fresh water. This approach converts solar energy into shaft power to drive a reverse osmosis desalination unit [10-14]. It has shown promise in southern Europe where sea water is present and optimal solar conditions exist. In addition, there is great potential for reducing energy consumption by recovering low-grade waste heat that would be otherwise rejected to the surroundings. It has been estimated that industrial low-grade waste heat accounts for more than 50 percent of heat generated [1]. In general, heat is considered to be moderate-to-low grade if its temperature is less than 370 °C, which is relevant to steam power plants based on the Rankine cycle. Since a wide range of fluid choices exist [15-20], ORCs have the advantage of operating with good relative efficiency over a wide range of temperatures, for example, from 120 °C to 370 °C [21-25]. Therefore, the overall energy efficiency of a system can be significantly improved by incorporating an ORC into the process. Depending on the application, waste heat from a process could be used to generate useful energy such as shaft work, electricity, or cooling that can be used by another process. This reduces the energy consumption of the overall system. This study investigates the use of low-grade waste heat to generate cooling. Essentially, an organic Rankine cycle is coupled to a vapor compression cycle to produce the cooling. Figure 1 shows the process and instrumentation diagram of the combined cycle. The approach taken is to utilize standard ORC with internal heat recuperation as the power source. In theory, The combined cycle is an alternative to the absorption cooling cycle with the advantage of providing shaft power, if needed, and is likely more efficient with high performance vapor expanders and compressors. A hot oil loop was used to simulate waste heat near 200 °C, in place of a process that produced waste heat. It vaporizes the ORC working fluid in the boiler and the superheated vapor is expanded to produce shaft work. Using HFC-245fa as a drying fluid upon expansion, the vapor still contains significant amount of sensible heat after expansion. The expanded vapor enters the power recuperator to preheat the fluid coming into the boiler. This internal heat recuperation is important for improving cycle efficiency as the required amount of heat at the boiler is reduced and the average heat input temperature also increased. The vapor then enters the power condenser to reject heat to the environment. The slightly subcooled fluid flows 4

PDF Image | Performance of a Combined Organic Rankine Cycle

PDF Search Title:

Performance of a Combined Organic Rankine Cycle

Original File Name Searched:

WangHailei.MechEngrng.PerformanceCombinedORC.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)