logo

Bringing Redox Flow Batteries to the Grid

PDF Publication Title:

Bringing Redox Flow Batteries to the Grid ( bringing-redox-flow-batteries-grid )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 122

[28] L. Wei, M.C. Wu, T.S. Zhao, Y.K. Zeng, Y.X. Ren, An aqueous alkaline battery consisting of inexpensive all-iron redox chemistries for large-scale energy storage, Appl. Energy. 215 (2018) 98–105. https://doi.org/10.1016/j.apenergy.2018.01.080. [29] E.A. Olivetti, G. Ceder, G.G. Gaustad, X. Fu, Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals, Joule. 1 (2017) 229– 243. https://doi.org/10.1016/j.joule.2017.08.019. [30] W. Dai, Y. Shen, Z. Li, L. Yu, J. Xi, X. Qiu, SPEEK/Graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery, J. Mater. Chem. A. 2 (2014) 12423–12432. https://doi.org/10.1039/c4ta02124j. [31] S. Kim, J. Yan, B. Schwenzer, J. Zhang, L. Li, J. Liu, Z. Yang, M.A. Hickner, Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries, Electrochem. Commun. 12 (2010) 1650–1653. https://doi.org/10.1016/j.elecom.2010.09.018. [32] B. Jiang, L. Wu, L. Yu, X. Qiu, J. Xi, A comparative study of Nafion series membranes for vanadium redox flow batteries, J. Memb. Sci. 510 (2016) 18–26. https://doi.org/10.1016/j.memsci.2016.03.007. [33] Y. Ashraf Gandomi, D.S. Aaron, M.M. Mench, Influence of membrane equivalentweight and reinforcement on ionic species crossover in all-vanadium redox flow batteries, Membranes (Basel). 7 (2017) 7–10. https://doi.org/10.3390/membranes7020029. [34] L. Cao, A. Kronander, A. Tang, D.W. Wang, M. Skyllas-Kazacos, Membrane permeability rates of vanadium ions and their effects on temperature variation in vanadium redox batteries, Energies. 9 (2016). https://doi.org/10.3390/en9121058. [35] K.W. Knehr, E. Agar, C.R. Dennison, A.R. Kalidindi, E.C. Kumbur, A Transient Vanadium Flow Battery Model Incorporating Vanadium Crossover and Water Transport through the Membrane, J. Electrochem. Soc. 159 (2012) A1446–A1459. https://doi.org/10.1149/2.017209jes. [36] V.P. Nemani, K.C. Smith, Analysis of Crossover-Induced Capacity Fade in Redox Flow Batteries with Non-Selective Separators, J. Electrochem. Soc. 165 (2018) A3144–A3155. https://doi.org/10.1149/2.0701813jes. [37] P.A. Boettcher, E. Agar, C.R. Dennison, E.C. Kumbur, Modeling of Ion Crossover in Vanadium Redox Flow Batteries: A Computationally-Efficient Lumped Parameter Approach for Extended Cycling, J. Electrochem. Soc. 163 (2016) A5244–A5252. https://doi.org/10.1149/2.0311601jes. [38] M. Skyllas-Kazacos, Performance Improvements and Cost Considerations of the Vanadium Redox Flow Battery, ECS Trans. 89 (2019) 29–45. https://doi.org/10.1149/08901.0029ecst. [39] Vanadium Price, (2021). https://www.vanadiumprice.com/ (accessed November 8, 2021). [40] X.G. Yang, Q. Ye, P. Cheng, T.S. Zhao, Effects of the electric field on ion crossover in vanadium redox flow batteries, Appl. Energy. 145 (2015) 306–319. https://doi.org/10.1016/j.apenergy.2015.02.038. [41] R.M. Darling, A.Z. Weber, M.C. Tucker, M.L. Perry, The Influence of Electric Field on Crossover in Redox-Flow Batteries, J. Electrochem. Soc. 163 (2015) A5014–A5022. 122

PDF Image | Bringing Redox Flow Batteries to the Grid

bringing-redox-flow-batteries-grid-122

PDF Search Title:

Bringing Redox Flow Batteries to the Grid

Original File Name Searched:

Rodby-krodby-phd-chemE-2022-thesis.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP