logo

Bringing Redox Flow Batteries to the Grid

PDF Publication Title:

Bringing Redox Flow Batteries to the Grid ( bringing-redox-flow-batteries-grid )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 123

https://doi.org/10.1149/2.0031601jes. [42] S. Corcuera, M. Skyllas-Kazacos, State-of-Charge Monitoring and Electrolyte Rebalancing Methods for the Vanadium Redox Flow Battery, Eur. Chem. Bull. 1 (2012) 511–519. https://doi.org/10.17628/ECB.2012.1.511. [43] S. Roe, C. Menictas, M. Skyllas-Kazacos, A High Energy Density Vanadium Redox Flow Battery with 3 M Vanadium Electrolyte, J. Electrochem. Soc. 163 (2016) A5023–A5028. https://doi.org/10.1149/2.0041601jes. [44] Q. Luo, L. Li, W. Wang, Z. Nie, X. Wei, B. Li, B. Chen, Z. Yang, V. Sprenkle, Capacity decay and remediation of nafion-based all-vanadium redox flow batteries, ChemSusChem. 6 (2013) 268–274. https://doi.org/10.1002/cssc.201200730. [45] S. Rudolph, U. Schröder, I.M. Bayanov, On-line controlled state of charge rebalancing in vanadium redox flow battery, J. Electroanal. Chem. 703 (2013) 29–37. https://doi.org/10.1016/j.jelechem.2013.05.011. [46] N. Roznyatovskaya, J. Noack, M. Fühl, K. Pinkwart, J. Tübke, Towards an all-vanadium redox-flow battery electrolyte: electrooxidation of V(III) in V(IV)/V(III) redox couple, Electrochim. Acta. 211 (2016) 926–932. https://doi.org/10.1016/j.electacta.2016.06.073. [47] R.M. Darling, A. Smeltz, S.T. Junker, M.L. Perry, Distribution of electrolytes in a flow battery, 9,853,310, 2013. http://patft.uspto.gov/netacgi/nph- Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrc hnum.htm&r=1&f=G&l=50&s1=9853310.PN.&OS=PN/9853310&RS=PN/9853310. [48] K. Wang, L. Liu, J. Xi, Z. Wu, X. Qiu, Reduction of capacity decay in vanadium flow batteries by an electrolyte-reflow method, J. Power Sources. 338 (2017) 17–25. https://doi.org/10.1016/j.jpowsour.2016.11.031. [49] A. Bhattarai, N. Wai, R. Schweiss, A. Whitehead, G.G. Scherer, P.C. Ghimire, T.M. Lim, H.H. Hng, Vanadium redox flow battery with slotted porous electrodes and automatic rebalancing demonstrated on a 1 kW system level, Appl. Energy. 236 (2019) 437–443. https://doi.org/10.1016/j.apenergy.2018.12.001. [50] A. Bhattarai, P. Ghimire, A. Whitehead, R. Schweiss, G. Scherer, N. Wai, H. Hng, Novel Approaches for Solving the Capacity Fade Problem during Operation of a Vanadium Redox Flow Battery, Batteries. 4 (2018) 48. https://doi.org/10.3390/batteries4040048. [51] K. Schafner, M. Becker, T. Turek, Capacity balancing for vanadium redox flow batteries through electrolyte overflow, J. Appl. Electrochem. 48 (2018) 639–649. https://doi.org/10.1007/s10800-018-1187-1. [52] B. Li, Q. Luo, X. Wei, Z. Nie, E. Thomsen, B. Chen, V. Sprenkle, W. Wang, Capacity decay mechanism of microporous separator-based all-vanadium redox flow batteries and its recovery, ChemSusChem. 7 (2014) 577–584. https://doi.org/10.1002/cssc.201300706. [53] H.C. Hesse, M. Schimpe, D. Kucevic, A. Jossen, Lithium-Ion Battery Storage for the Grid — A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids, Energies. 10 (2017). https://doi.org/10.3390/en10122107. [54] Department of Energy, Levelized Cost of Energy (LCOE), (2015). https://www.energy.gov/sites/prod/files/2015/08/f25/LCOE.pdf (accessed February 7, 123

PDF Image | Bringing Redox Flow Batteries to the Grid

bringing-redox-flow-batteries-grid-123

PDF Search Title:

Bringing Redox Flow Batteries to the Grid

Original File Name Searched:

Rodby-krodby-phd-chemE-2022-thesis.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP