Development of Redox Flow Batteries Based on New Chemistries

PDF Publication Title:

Development of Redox Flow Batteries Based on New Chemistries ( development-redox-flow-batteries-based-new-chemistries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 023

hydrophilic microstructures. Chem 4, 1035– 1046. 19. Peng, S., Zhang, L., Zhang, C., Ding, Y., Guo, X., He, G., and Yu, G. (2018). Gradient- distributed metal–organic framework–based porous membranes for nonaqueous redox flow batteries. Adv. Energy Mater. 8, 1802533. 20. Zhao, Y., Ding, Y., Li, Y., Peng, L., Byon, H.R., Goodenough, J.B., and Yu, G. (2015). A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chem. Soc. Rev. 44, 7968–7996. 21. Yang, Z., Liu, J., Baskaran, S., Imhoff, C.H., and Holladay, J.D. (2010). Enabling renewable energy and the future grid with advanced electricity storage. JOM 62, 14. 22. Wang, Y., Ding, Y., Pan, L., Shi, Y., Yue, Z., Shi, Y., and Yu, G. (2016). Understanding the size- dependent sodium storage properties of Na2C6O6-based organic electrodes for sodium-ion batteries. Nano Lett. 16, 3329– 3334. 23. Duan, W., Huang, J., Kowalski, J.A., Shkrob, I.A., Vijayakumar, M., Walter, E., Pan, B., Yang, Z., Milshtein, J.D., Li, B., et al. (2017). Wine- dark sea in an organic flow battery: storing negative charge in 2,1,3-benzothiadiazole radicals leads to improved cyclability. ACS Energy Lett. 2, 1156–1161. 24. Wang, G., Huang, B., Liu, D., Zheng, D., Harris, J., Xue, J., and Qu, D. (2018). Exploring polycyclic aromatic hydrocarbons as an anolyte for nonaqueous redox flow batteries. J. Mater. Chem. A 6, 13286–13293. 25. Brushett, F.R., Vaughey, J.T., and Jansen, A.N. (2012). An all-organic non-aqueous lithium- ion redox flow battery. Adv. Energy Mater. 2, 1390–1396. 26. Suttil, J.A., Kucharyson, J.F., Escalante- Garcia, I.L., Cabrera, P.J., James, B.R., Savinell, R.F., Sanford, M.S., and Thompson, L.T. (2015). Metal acetylacetonate complexes for high energy density non-aqueous redox flow batteries. J. Mater. Chem. A 3, 7929– 7938. 27. Huang, J., Cheng, L., Assary, R.S., Wang, P., Xue, Z., Burrell, A.K., Curtiss, L.A., and Zhang, L. (2015). Liquid catholyte molecules for nonaqueous redox flow batteries. Adv. Energy Mater. 5, 1401782. 28. Zhang, J., Yang, Z., Shkrob, I.A., Assary, R.S., Tung, S.o., Silcox, B., Duan, W., Zhang, J., Su, C.C., Hu, B., et al. (2017). Annulated dialkoxybenzenes as catholyte materials for non-aqueous redox flow batteries: achieving high chemical stability through bicyclic substitution. Adv. Energy Mater. 7, 1701272. 29. Shimizu, A., Takenaka, K., Handa, N., Nokami, T., Itoh, T., and Yoshida, J.-I. (2017). Liquid quinones for solvent-free redox flow batteries. Adv. Mater. 29, 1606592. 30. Milshtein, J.D., Kaur, A.P., Casselman, M.D., Kowalski, J.A., Modekrutti, S., Zhang, P.L., Harsha Attanayake, N., Elliott, C.F., Parkin, S.R., Risko, C., et al. (2016). High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries. Energy Environ. Sci. 9, 3531– 3543. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. Wei, X., Cosimbescu, L., Xu, W., Hu, J.Z., Vijayakumar, M., Feng, J., Hu, M.Y., Deng, X., Xiao, J., Liu, J., et al. (2015). Towards high- performance nonaqueous redox flow electrolyte via ionic modification of active species. Adv. Energy Mater. 5, 1400678. Zhao, Y., Ding, Y., Song, J., Li, G., Dong, G., Goodenough, J.B., and Yu, G. (2014). Sustainable electrical energy storage through the ferrocene/ferrocenium redox reaction in aprotic electrolyte. Angew. Chem. Int. Ed. 53, 11036–11040. Cong, G., Zhou, Y., Li, Z., and Lu, Y.-C. (2017). A highly concentrated catholyte enabled by a 45. Zhang, C., Ding, Y., Zhang, L., Wang, X., Zhao, Y., Zhang, X., and Yu, G. (2017). A sustainable redox-flow battery with an aluminum-based, deep-eutectic-solvent anolyte. Angew. Chem. Int. Ed. 56, 7454–7459. 46. Abood, H.M.A., Abbott, A.P., Ballantyne, A.D., and Ryder, K.S. (2011). Do all ionic liquids need organic cations? Characterisation of [AlCl2,namide] + AlCl4 and comparison with imidazolium based systems. Chem. Commun. 47, 3523–3525. 47. Xu, C., Wu, Q., Hua, Y., and Li, J. (2014). The electrodeposition of Zn-Ti alloys from ZnCl2- urea deep eutectic solvent. J. Solid State Electrochem. 18, 2149–2155. 48. Wang, Y., Niu, Z., Zheng, Q., Zhang, C., Ye, J., Dai, G., Zhao, Y., and Zhang, X. (2018). Zn- based eutectic mixture as anolyte for hybrid redox flow batteries. Sci. Rep. 8, 5740. 49. Wang, Y., and Zhou, H. (2016). A green and cost-effective rechargeable battery with high energy density based on a deep eutectic catholyte. Energy Environ. Sci. 9, 2267–2272. 50. Zhang, L., Zhang, C., Ding, Y., Ramirez- Meyers, K., and Yu, G. (2017). A low-cost and high-energy hybrid iron-aluminum liquid battery achieved by deep eutectic solvents. Joule 1, 623–633. 51. Ding, Y., and Yu, G. (2017). Molecular engineering enables better organic flow batteries. Chem 3, 917–919. 52. Takechi, K., Kato, Y., and Hase, Y. (2015). A highly concentrated catholyte based on a solvate ionic liquid for rechargeable flow batteries. Adv. Mater. 27, 2501–2506. 53. Zhang, C., Niu, Z., Ding, Y., Zhang, L., Zhou, Y., Guo, X., Zhang, X., Zhao, Y., and Yu, G. (2018). Highly concentrated phthalimide- based anolytes for organic redox flow batteries with enhanced reversibility. Chem 4, 2814–2825. 54. Ding, Y., Zhang, C., Zhang, L., Wei, H., Li, Y., and Yu, G. (2018). Insights into hydrotropic solubilization for hybrid ion redox flow batteries. ACS Energy Lett. 3, 2641–2648. 55. Wang, H., Yu, D., Kuang, C., Cheng, L., Li, W., Feng, X., Zhang, Z., Zhang, X., and Zhang, Y. (2019). Alkali metal anodes for rechargeable batteries. Chem 5, 313–338. 56. Hueso, K.B., Armand, M., and Rojo, T. (2013). High temperature sodium batteries: status, challenges and future trends. Energy Environ. Sci. 6, 734–749. 57. Lu, Y., Goodenough, J.B., and Kim, Y. (2011). Aqueous cathode for next-generation alkali- ion batteries. J. Am. Chem. Soc. 133, 5756– 5759. 58. Xie, C., Duan, Y., Xu, W., Zhang, H., and Li, X. (2017). A low-cost neutral zinc–iron flow battery with high energy density for stationary energy storage. Angew. Chem. Int. Ed. 56, 14953–14957. 59. Zhao, Y., Ding, Y., Song, J., Peng, L., Goodenough, J.B., and Yu, G. (2014). A reversible Br2/Br redox couple in the aqueous phase as a high-performance catholyte for alkali-ion batteries. Energy Environ. Sci. 7, 1990–1995. 1986 Chem 5, 1964–1987, August 8, 2019 low-melting-point ferrocene derivative. Energy Lett. 2, 869–875. Hendriks, K.H., Robinson, S.G., Braten, Sevov, C.S., Helms, B.A., Sigman, M.S., Minteer, S.D., and Sanford, M.S. (2018). performance oligomeric catholytes for effective macromolecular separation in nonaqueous redox flow batteries. ACS Sci. 4, 189–196. ACS M.N., High- Cent. Odom, S. (2018). Preventing crossover in redox flow batteries through active material oligomerization. ACS Cent. Sci. 4, 140–141. Hagemann, T., Winsberg, J., Ha ̈ upler, B., Janoschka, T., Gruber, J.J., Wild, A., and Schubert, U.S. (2017). A bipolar nitronyl nitroxide small molecule for an all-organic symmetric redox-flow battery. NPG Asia Mater. 9, e340. Potash, R.A., McKone, J.R., Conte, S., and Abrun ̃ a, H.D. (2016). On the benefits of a symmetric redox flow battery. J. Electrochem. Soc. 163, A338–A344. Hagemann, T., Winsberg, J., Wild, A., and Schubert, U.S. (2017). Synthesis and electrochemical study of a TCAA derivative – a potential bipolar redox-active material. Electrochim. Acta 228, 494–502. Charlton, G.D., Barbon, S.M., Gilroy, J.B., and Dyker, C.A. (2019). A bipolar verdazyl radical for a symmetric all-organic redox flow-type battery. J. Energy Chem. 34, 52–56. Heiland, N., Cidare ́ r, C., Rohr, C., Piescheck, M., Ahrens, J., Bro ̈ ring, M., and Schro ̈ der, U. (2017). Design and evaluation of a boron dipyrrin electrophore for redox flow batteries. ChemSusChem 10, 4215–4222. Smith, E.L., Abbott, A.P., and Ryder, K.S. (2014). Deep eutectic solvents (DESs) and their applications. Chem. Rev. 114, 11060– 11082. Lloyd, D., Vainikka, T., and Kontturi, K. (2013). The development of an all copper hybrid redox flow battery using deep eutectic solvents. Electrochim. Acta 100, 18–23. Zhang, C., Zhang, L., Ding, Y., Guo, X., and Yu, G. (2018). Eutectic electrolytes for high- energy-density redox flow batteries. ACS Energy Lett. 3, 2875–2883. Abbott, A.P., Capper, G., Davies, D.L., Munro, H.L., Rasheed, R.K., and Tambyrajah, V. (2001). Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem. Commun. 2010–2011.

PDF Image | Development of Redox Flow Batteries Based on New Chemistries

PDF Search Title:

Development of Redox Flow Batteries Based on New Chemistries

Original File Name Searched:

PIIS2451929419302207.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)