Development of Redox Flow Batteries Based on New Chemistries

PDF Publication Title:

Development of Redox Flow Batteries Based on New Chemistries ( development-redox-flow-batteries-based-new-chemistries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 024

60. Pan, H., Wei, X., Henderson, W.A., Shao, Y., Chen, J., Bhattacharya, P., Xiao, J., and Liu, J. (2015). On the way toward understanding solution chemistry of lithium polysulfides for high energy Li–S redox flow batteries. Adv. Energy Mater. 5, 1500113. 61. Chen, H., and Lu, Y.-C. (2016). A high-energy- density multiple redox semi-solid-liquid flow battery. Adv. Energy Mater. 6, 1502183. 62. Ding, Y., Zhao, Y., Li, Y., Goodenough, J.B., and Yu, G. (2017). A high-performance all- metallocene-based, non-aqueous redox flow battery. Energy Environ. Sci. 10, 491–497. 63. Ding, Y., and Yu, G. (2016). A bio-inspired, heavy-metal-free, dual-electrolyte liquid battery towards sustainable energy storage. Angew. Chem. Int. Ed. 55, 4772–4776. 64. Ding, Y., Li, Y., and Yu, G. (2016). Exploring bio-inspired quinone-based organic redox flow batteries: a combined experimental and computational study. Chem 1, 790–801. 65. Wei, X., Xu, W., Vijayakumar, M., Cosimbescu, L., Liu, T., Sprenkle, V., and Wang, W. (2014). TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries. Adv. Mater. 26, 7649–7653. 66. Ding, Y., Guo, X., Qian, Y., Zhang, L., Xue, L., Goodenough, J.B., and Yu, G. (2019). A liquid- metal-enabled versatile organic alkali-ion battery. Adv. Mater. 31, 1806956. 67. Senthilkumar, S.T., Han, J., Park, J., Min Hwang, S., Jeon, D., and Kim, Y. (2018). Energy efficient Na-aqueous-catholyte redox flow battery. Energy Storage Mater. 12, 324–330. 68. Liu, C., Shamie, J.S., Shaw, L.L., and Sprenkle, V.L. (2016). An ambient temperature molten sodium–vanadium battery with aqueous flowing catholyte. ACS Appl. Mater. Interfaces 8, 1545–1552. 69. Lu, X., Li, G., Kim, J.Y., Mei, D., Lemmon, J.P., Sprenkle, V.L., and Liu, J. (2014). Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage. Nat. Commun. 5, 4578. 70. Lu, X., Bowden, M.E., Sprenkle, V.L., and Liu, J. (2015). A low cost, high energy density, and long cycle life potassium-sulfur battery for grid-scale energy storage. Adv. Mater. 27, 5915–5922. 71. Baclig, A.C., McConohy, G., Poletayev, A., Michelson, A., Kong, N., Lee, J.-H., Chueh, W.C., and Rugolo, J. (2018). High-voltage, room-temperature liquid metal flow battery enabled by Na-KjK-b00 -alumina stability. Joule 2, 1287–1296. 72. Yu, J., Hu, Y.S., Pan, F., Zhang, Z., Wang, Q., Li, H., Huang, X., and Chen, L. (2017). A class of liquid anode for rechargeable batteries with ultralong cycle life. Nat. Commun. 8, 14629. 73. DeBruler, C., Hu, B., Moss, J., Liu, X., Luo, J., Sun, Y., and Liu, T.L. (2017). Designer two- electron storage viologen anolyte materials for neutral aqueous organic redox flow batteries. Chem 3, 961–978. 74. Duduta, M., Ho, B., Wood, V.C., Limthongkul, P., Brunini, V.E., Carter, W.C., and Chiang, Y.-M. (2011). Semi-solid lithium rechargeable flow battery. Adv. Energy Mater. 1, 511–516. 75. Hamelet, S., Larcher, D., Dupont, L., and Tarascon, J.-M. (2013). Silicon-based non aqueous anolyte for Li redox-flow batteries. J. Electrochem. Soc. 160, A516–A520. 76. Biendicho, J.J., Flox, C., Sanz, L., and Morante, J.R. (2016). Static and dynamic studies on LiNi1/3Co1/3Mn1/3O2-based suspensions for semi-solid flow batteries. ChemSusChem 9, 1938–1944. 77. Fan, F.Y., Woodford, W.H., Li, Z., Baram, N., Smith, K.C., Helal, A., McKinley, G.H., Carter, W.C., and Chiang, Y.M. (2014). Polysulfide flow batteries enabled by percolating nanoscale conductor networks. Nano Lett. 14, 2210–2218. 78. Chen, H., Zou, Q., Liang, Z., Liu, H., Li, Q., and Lu, Y.C. (2015). Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries. Nat. Commun. 6, 5877. 79. Yan, R., and Wang, Q. (2018). Redox- targeting-based flow batteries for large-scale energy storage. Adv. Mater. 30, 1802406. 80. Jia, C., Pan, F., Zhu, Y.G., Huang, Q., Lu, L., and Wang, Q. (2015). High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane. Sci. Adv. 1, e1500886. 81. Huang, Q., Yang, J., Ng, C.B., Jia, C., and Wang, Q. (2016). A redox flow lithium battery based on the redox targeting reactions between LiFePO4 and iodide. Energy Environ. Sci. 9, 917–921. 82. Zhu, Y.G., Du, Y., Jia, C., Zhou, M., Fan, L., Wang, X., and Wang, Q. (2017). Unleashing the power and energy of LiFePO4-based redox flow lithium battery with a bifunctional redox mediator. J. Am. Chem. Soc. 139, 6286– 6289. 83. Zhou, M., Huang, Q., Pham Truong, T.N., Ghilane, J., Zhu, Y.G., Jia, C., Yan, R., Fan, L., Randriamahazaka, H., and Wang, Q. (2017). Nernstian-potential-driven redox-targeting reactions of battery materials. Chem 3, 1036– 1049. 84. Yu, J., Fan, L., Yan, R., Zhou, M., and Wang, Q. (2018). Redox targeting-based aqueous redox flow lithium battery. ACS Energy Lett. 3, 2314–2320. 85. Gibson, T.L., and Kelly, N.A. (2010). Solar photovoltaic charging of lithium-ion batteries. J. Power Sources 195, 3928–3932. 86. Hodes, G., Manassen, J., and Cahen, D. (1976). Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes. Nature 261, 403–404. 87. Liu, P., Cao, Y.L., Li, G.R., Gao, X.P., Ai, X.P., and Yang, H.X. (2013). A solar rechargeable flow battery based on photoregeneration of two soluble redox couples. ChemSusChem 6, 802–806. 88. Cheng, Q., Fan, W., He, Y., Ma, P., Vanka, S., Fan, S., Mi, Z., and Wang, D. (2017). Photorechargeable high voltage redox battery enabled by Ta3N5 and GaN/Si dual- photoelectrode. Adv. Mater. 29, 1700312. 89. Liao, S., Zong, X., Seger, B., Pedersen, T., Yao, T., Ding, C., Shi, J., Chen, J., and Li, C. (2016). Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging. Nat. Commun. 7, 11474. 90. Li, W., Fu, H.C., Li, L., Caba ́ n-Acevedo, M., He, J.H., and Jin, S. (2016). Integrated photoelectrochemical solar energy conversion and organic redox flow battery devices. Angew. Chem. Int. Ed. 55, 13104– 13108. 91. Li, Q., Li, N., Liu, Y., Wang, Y., and Zhou, H. (2016). High-safety and low-cost photoassisted chargeable aqueous sodium- ion batteries with 90% input electric energy savings. Adv. Energy Mater. 6, 1600632. 92. Yu, M., McCulloch, W.D., Beauchamp, D.R., Huang, Z., Ren, X., and Wu, Y. (2015). Aqueous lithium–iodine solar flow battery for the simultaneous conversion and storage of solar energy. J. Am. Chem. Soc. 137, 8332–8335. 93. Ferrigno, R., Stroock, A.D., Clark, T.D., Mayer, M., and Whitesides, G.M. (2002). Membraneless vanadium redox fuel cell using laminar flow. J. Am. Chem. Soc. 124, 12930– 12931. 94. Braff, W.A., Bazant, M.Z., and Buie, C.R. (2013). Membrane-less hydrogen bromine flow battery. Nat. Commun. 4, 2346. 95. Yang, Y., Zheng, G., and Cui, Y. (2013). A membrane-free lithium/polysulfide semi- liquid battery for large-scale energy storage. Energy Environ. Sci. 6, 1552–1558. 96. Ding, Y., Zhao, Y., and Yu, G. (2015). A membrane-free ferrocene-based high-rate semiliquid battery. Nano Lett. 15, 4108–4113. 97. Biswas, S., Senju, A., Mohr, R., Hodson, T., Karthikeyan, N., Knehr, K.W., Hsieh, A.G., Yang, X., Koel, B.E., and Steingart, D.A. (2017). Minimal architecture zinc–bromine battery for low cost electrochemical energy storage. Energy Environ. Sci. 10, 114–120. 98. Gong, K., Xu, F., Lehrich, M.G., Ma, X., Gu, S., and Yan, Y. (2017). Exploiting immiscible aqueous-nonaqueous electrolyte interface toward a membraneless redox-flow battery concept. J. Electrochem. Soc. 164, A2590– A2593. 99. Navalpotro, P., Palma, J., Anderson, M., and Marcilla, R. (2017). A membrane-free redox flow battery with two immiscible redox electrolytes. Angew. Chem. Int. Ed. 56, 12460–12465. 100. Wu, Y., and Liu, N. (2018). Visualizing battery reactions and processes by using in situ and in operando microscopies. Chem 4, 438–465. Chem 5, 1964–1987, August 8, 2019 1987

PDF Image | Development of Redox Flow Batteries Based on New Chemistries

PDF Search Title:

Development of Redox Flow Batteries Based on New Chemistries

Original File Name Searched:

PIIS2451929419302207.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)