PDF Publication Title:
Text from PDF Page: 043
Energies 2021, 14, 5643 43 of 45 212. Zhang, M.; Moore, M.; Watson, J.S.; Zawodzinski, T.A.; Counce, R.M. Capital Cost Sensitivity Analysis of an All-Vanadium Redox-Flow Battery. J. Electrochem. Soc. 2012, 159, A1183. [CrossRef] 213. Navalpotro, P.; Neves, C.M.S.S.; Palma, J.; Freire, M.G.; Coutinho, J.A.P.; Marcilla, R. Pioneering Use of Ionic Liquid-Based Aqueous Biphasic Systems as Membrane-Free Batteries. Adv. Sci. 2018, 5, 1800576. [CrossRef] 214. Park,H.B.;Lee,K.H.;Sung,H.J.PerformanceofH-ShapedMembranelessMicroFuelCells.J.PowerSources2013,226,266–271. [CrossRef] 215. López-Montesinos,P.O.;Yossakda,N.;Schmidt,A.;Brushett,F.R.;Pelton,W.E.;Kenis,P.J.A.Design,Fabrication,andCharacteri- zation of a Planar, Silicon-Based, Monolithically Integrated Micro Laminar Flow Fuel Cell with a Bridge-Shaped Microchannel Cross-Section. J. Power Sources 2011, 196, 4638–4645. [CrossRef] 216. Marschewski, J.; Jung, S.; Ruch, P.; Prasad, N.; Mazzotti, S.; Michel, B.; Poulikakos, D. Mixing with Herringbone-Inspired Microstructures: Overcoming the Diffusion Limit in Co-Laminar Microfluidic Devices. Lab Chip 2015, 15, 1923–1933. [CrossRef] [PubMed] 217. Chang, M.-H.; Chen, F.; Fang, N.-S. Analysis of Membraneless Fuel Cell Using Laminar Flow in a Y-Shaped Microchannel. J. Power Sources 2006, 159, 810–816. [CrossRef] 218. Park,H.B.;Ahmed,D.H.;Lee,K.H.;Sung,H.J.AnH-ShapedDesignforMembranelessMicroFuelCells.Electrochim.Acta2009, 54, 4416–4425. [CrossRef] 219. Kjeang,E.;Michel,R.;Harrington,D.A.;Djilali,N.;Sinton,D.AMicrofluidicFuelCellwithFlow-ThroughPorousElectrodes. J. Am. Chem. Soc. 2008, 130, 4000–4006. [CrossRef] 220. Kjeang,E.;Proctor,B.T.;Brolo,A.G.;Harrington,D.A.;Djilali,N.;Sinton,D.High-PerformanceMicrofluidicVanadiumRedox Fuel Cell. Electrochim. Acta 2007, 52, 4942–4946. [CrossRef] 221. Ferrigno,R.;Stroock,A.D.;Clark,T.D.;Mayer,M.;Whitesides,G.M.MembranelessVanadiumRedoxFuelCellUsingLaminar Flow. J. Am. Chem. Soc. 2002, 124, 12930–12931. [CrossRef] [PubMed] 222. Ibáñez, S.E.; Quintero, A.E.; García-Salaberri, P.A.; Vera, M. Effects of the Diffusive Mixing and Self-Discharge Reactions in Microfluidic Membraneless Vanadium Redox Flow Batteries. Int. J. Heat Mass Transf. 2021, 170, 121022. [CrossRef] 223. Ibrahim,O.A.;Goulet,M.-A.;Kjeang,E.In-SituCharacterizationofSymmetricDual-PassArchitectureofMicrofluidicCo-Laminar Flow Cells. Electrochim. Acta 2016, 187, 277–285. [CrossRef] 224. Lee,J.W.;Goulet,M.-A.;Kjeang,E.MicrofluidicRedoxBattery.LabChip2013,13,2504.[CrossRef] 225. Marschewski,J.;Ruch,P.;Ebejer,N.;HuertaKanan,O.;Lhermitte,G.;Cabrol,Q.;Michel,B.;Poulikakos,D.OntheMassTransfer Performance Enhancement of Membraneless Redox Flow Cells with Mixing Promoters. Int. J. Heat Mass Transf. 2017, 106, 884–894. [CrossRef] 226. Navalpotro, P.; Palma, J.; Anderson, M.; Marcilla, R. A Membrane-Free Redox Flow Battery with Two Immiscible Redox Electrolytes. Angew. Chem. 2017, 129, 12634–12639. [CrossRef] 227. Bamgbopa,M.O.;Shao-Horn,Y.;Hashaikeh,R.;Almheiri,S.CyclableMembranelessRedoxFlowBatteriesBasedonImmiscible Liquid Electrolytes: Demonstration with All-Iron Redox Chemistry. Electrochim. Acta 2018, 267, 41–50. [CrossRef] 228. Navalpotro,P.;Trujillo,C.;Montes,I.;Neves,C.M.S.S.;Palma,J.;Freire,M.G.;Coutinho,J.A.P.;Marcilla,R.CriticalAspects of Membrane-Free Aqueous Battery Based on Two Immiscible Neutral Electrolytes. Energy Storage Mater. 2020, 26, 400–407. [CrossRef] 229. Navalpotro, P.; Sierra, N.; Trujillo, C.; Montes, I.; Palma, J.; Marcilla, R. Exploring the Versatility of Membrane-Free Battery Concept Using Different Combinations of Immiscible Redox Electrolytes. ACS Appl. Mater. Interfaces 2018, 10, 41246–41256. [CrossRef] [PubMed] 230. Molina-Osorio,A.F.;Gamero-Quijano,A.;Peljo,P.;Scanlon,M.D.MembranelessEnergyConversionandStorageUsingImmiscible Electrolyte Solutions. Curr. Opin. Electrochem. 2020, 21, 100–108. [CrossRef] 231. Peljo,P.;Bichon,M.;Girault,H.H.IonTransferBattery:StoringEnergybyTransferringIonsacrossLiquid–LiquidInterfaces. Chem. Commun. 2016, 52, 9761–9764. [CrossRef] 232. Han,X.;Li,X.;White,J.;Zhong,C.;Deng,Y.;Hu,W.;Ma,T.Metal–AirBatteries:FromStatictoFlowSystem.Adv.EnergyMater. 2018, 8, 1801396. [CrossRef] 233. Yu,W.;Shang,W.;Tan,P.;Chen,B.;Wu,Z.;Xu,H.;Shao,Z.;Liu,M.;Ni,M.TowardaNewGenerationofLowCost,Efficient,and Durable Metal–Air Flow Batteries. J. Mater. Chem. A 2019, 7, 26744–26768. [CrossRef] 234. Risbud,M.;Menictas,C.;Skyllas-Kazacos,M.;Noack,J.VanadiumOxygenFuelCellUtilisingHighConcentrationElectrolyte. Batteries 2019, 5, 24. [CrossRef] 235. Charvát,J.;Mazúr,P.;Paidar,M.;Pocedicˇ,J.;Vrána,J.;Mrlík,J.;Kosek,J.TheRoleofIonExchangeMembraneinVanadium Oxygen Fuel Cell. J. Membr. Sci. 2021, 629, 119271. [CrossRef] 236. Chen,P.-T.;Sangeetha,T.;Hsu,T.-W.;Yang,C.-J.;Yung,T.-Y.;Yan,W.-M.;Huang,K.D.ImprovedPerformanceofaZn-AirFuel Cell by Coupling Zn Particle Fuel and Flowing Electrolyte. Chem. Phys. Lett. 2019, 728, 160–166. [CrossRef] 237. Pei,P.;Huang,S.;Chen,D.;Li,Y.;Wu,Z.;Ren,P.;Wang,K.;Jia,X.AHigh-Energy-DensityandLong-Stable-PerformanceZinc-Air Fuel Cell System. Appl. Energy 2019, 241, 124–129. [CrossRef] 238. Sangeetha, T.; Chen, P.-T.; Yan, W.-M.; Huang, K.D. Enhancement of Air-Flow Management in Zn-Air Fuel Cells by the Optimization of Air-Flow Parameters. Energy 2020, 197, 117181. [CrossRef]PDF Image | PNNL Vanadium Redox Flow Battery Stack
PDF Search Title:
PNNL Vanadium Redox Flow Battery StackOriginal File Name Searched:
energies-14-05643-v2.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP |