PDF Publication Title:
Text from PDF Page: 044
Energies 2021, 14, 5643 44 of 45 239. Zhang, N.; Deng, C.; Tao, S.; Guo, L.; Cheng, Y. Bifunctional Oxygen Electrodes with Gradient Hydrophilic/Hydrophobic Reactive Interfaces for Metal Air Flow Batteries. Chem. Eng. Sci. 2020, 224, 115795. [CrossRef] 240. Yang,T.-F.;Lu,J.-H.;Yan,W.-M.;Ghalambaz,M.OptimizationofPulseCurrentonEnergyStorageofZinc-AirFlowBatteries. J. Power Sources 2019, 442, 227253. [CrossRef] 241. Yu,W.;Shang,W.;Xiao,X.;Ma,Y.;Chen,Z.;Chen,B.;Xu,H.;Ni,M.;Tan,P.ElucidatingtheMechanismofDischargePerformance Improvement in Zinc-Air Flow Batteries: A Combination of Experimental and Modeling Investigations. J. Energy Storage 2021, 40, 102779. [CrossRef] 242. Huang,J.;Faghri,A.CapacityEnhancementofaLithiumOxygenFlowBattery.Electrochim.Acta2015,174,908–918.[CrossRef] 243. GuangZhu,Y.;Jia,C.;Yang,J.;Pan,F.;Huang,Q.;Wang,Q.DualRedoxCatalystsforOxygenReductionandEvolutionReactions: Towards a Redox Flow Li–O2 Battery. Chem. Commun. 2015, 51, 9451–9454. [CrossRef] 244. Zhu,Y.G.;Wang,X.;Jia,C.;Yang,J.;Wang,Q.Redox-MediatedORRandOERReactions:RedoxFlowLithiumOxygenBatteries Enabled with a Pair of Soluble Redox Catalysts. ACS Catal. 2016, 6, 6191–6197. [CrossRef] 245. Ruggeri,I.;Arbizzani,C.;Soavi,F.CarbonaceousCatholyteforHighEnergyDensitySemi-SolidLi/O2FlowBattery.Carbon2018, 130, 749–757. [CrossRef] 246. Guo,L.;Guo,H.;Huang,H.;Tao,S.;Cheng,Y.InhibitionofZincDendritesinZinc-BasedFlowBatteries.Front.Chem.2020, 8, 557. [CrossRef] 247. Xu, Z.; Fan, Q.; Li, Y.; Wang, J.; Lund, P.D. Review of Zinc Dendrite Formation in Zinc Bromine Redox Flow Battery. Renew. Sustain. Energy Rev. 2020, 127, 109838. [CrossRef] 248. Wu,M.C.;Zhao,T.S.;Jiang,H.R.;Zeng,Y.K.;Ren,Y.X.High-PerformanceZincBromineFlowBatteryviaImprovedDesignof Electrolyte and Electrode. J. Power Sources 2017, 355, 62–68. [CrossRef] 249. Wu,M.C.;Zhao,T.S.;Wei,L.;Jiang,H.R.;Zhang,R.H.ImprovedElectrolyteforZinc-BromineFlowBatteries.J.PowerSources 2018, 384, 232–239. [CrossRef] 250. Jiang,H.R.;Wu,M.C.;Ren,Y.X.;Shyy,W.;Zhao,T.S.TowardsaUniformDistributionofZincintheNegativeElectrodeforZinc Bromine Flow Batteries. Appl. Energy 2018, 213, 366–374. [CrossRef] 251. Archana,K.S.;Naresh,R.p.;Enale,H.;Rajendran,V.;Mohan,A.M.V.;Bhaskar,A.;Ragupathy,P.;Dixon,D.EffectofPositive Electrode Modification on the Performance of Zinc-Bromine Redox Flow Batteries. J. Energy Storage 2020, 29, 101462. [CrossRef] 252. Lu,W.;Xu,P.;Shao,S.;Li,T.;Zhang,H.;Li,X.MultifunctionalCarbonFeltElectrodewithN-RichDefectsEnablesaLong-Cycle Zinc-Bromine Flow Battery with Ultrahigh Power Density. Adv. Funct. Mater. 2021, 31, 2102913. [CrossRef] 253. Mariyappan, K.; Velmurugan, R.; Subramanian, B.; Ragupathy, P.; Ulaganathan, M. Low Loading of Pt@Graphite Felt for Enhancing Multifunctional Activity towards Achieving High Energy Efficiency of Zn–Br2 Redox Flow Battery. J. Power Sources 2021, 482, 228912. [CrossRef] 254. Lee,J.-N.;Do,E.;Kim,Y.;Yu,J.-S.;Kim,K.J.DevelopmentofTitanium3DMeshInterlayerforEnhancingtheElectrochemical Performance of Zinc–Bromine Flow Battery. Sci. Rep. 2021, 11, 4508. [CrossRef] 255. Yuan,X.;Mo,J.;Huang,J.;Liu,J.;Liu,C.;Zeng,X.;Zhou,W.;Yue,J.;Wu,X.;Wu,Y.AnAqueousHybridZinc-BromineBattery with High Voltage and Energy Density. ChemElectroChem 2020, 7, 1531–1536. [CrossRef] 256. Hua,L.;Lu,W.;Li,T.;Xu,P.;Zhang,H.;Li,X.AHighlySelectivePorousCompositeMembranewithBromineCapturingAbility for a Bromine-Based Flow Battery. Mater. Today Energy 2021, 21, 100763. [CrossRef] 257. Adith,R.V.;Naresh,R.p.;Mariyappan,K.;Ulaganathan,M.;Ragupathy,P.AnOptimisticApproachonFlowRateandSupporting Electrolyte for Enhancing the Performance Characteristics of Zn-Br2 Redox Flow Battery. Electrochim. Acta 2021, 388, 138451. [CrossRef] 258. Yu,F.;Zhang,C.;Wang,F.;Gu,Y.;Zhang,P.;Waclawik,E.R.;Du,A.;Ostrikov,K.;Wang,H.AZincBromine“Supercapattery” System Combining Triple Functions of Capacitive, Pseudocapacitive and Battery-Type Charge Storage. Mater. Horiz. 2020, 7, 495–503. [CrossRef] 259. Wang,Z.;Tam,L.-Y.S.;Lu,Y.-C.FlexibleSolidFlowElectrodesforHigh-EnergyScalableEnergyStorage.Joule2019,3,1677–1688. [CrossRef] 260. Qi,Z.;Koenig,G.M.ReviewArticle:FlowBatterySystemswithSolidElectroactiveMaterials.J.Vac.Sci.Technol.BNanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2017, 35, 040801. [CrossRef] 261. Ventosa,E.;Buchholz,D.;Klink,S.;Flox,C.;Chagas,L.G.;Vaalma,C.;Schuhmann,W.;Passerini,S.;Morante,J.R.Non-Aqueous Semi-Solid Flow Battery Based on Na-Ion Chemistry. P2-Type NaxNi0.22Co0.11Mn0.66O2–NaTi2(PO4)3. Chem. Commun. 2015, 51, 7298–7301. [CrossRef] 262. Liu, Y.; Hu, Q.; Zhong, J.; Wang, Z.; Guo, H.; Yan, G.; Li, X.; Peng, W.; Wang, J. A Renewable Sedimentary Slurry Battery: Preliminary Study in Zinc Electrodes. iScience 2020, 23, 101821. [CrossRef] 263. Percin,K.;Rommerskirchen,A.;Sengpiel,R.;Gendel,Y.;Wessling,M.3D-PrintedConductiveStaticMixersEnableAll-Vanadium Redox Flow Battery Using Slurry Electrodes. J. Power Sources 2018, 379, 228–233. [CrossRef] 264. Petek,T.J.;Hoyt,N.C.;Savinell,R.F.;Wainright,J.S.SlurryElectrodesforIronPlatinginanAll-IronFlowBattery.J.PowerSources 2015, 294, 620–626. [CrossRef] 265. Chen,H.;Liu,Y.;Zhang,X.;Lan,Q.;Chu,Y.;Li,Y.;Wu,Q.Single-ComponentSlurryBasedLithium-IonFlowBatterywith3D Current Collectors. J. Power Sources 2021, 485, 229319. [CrossRef]PDF Image | PNNL Vanadium Redox Flow Battery Stack
PDF Search Title:
PNNL Vanadium Redox Flow Battery StackOriginal File Name Searched:
energies-14-05643-v2.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP |