logo

Comparison between Solution-Based Synthesis Methods of ZrO2

PDF Publication Title:

Comparison between Solution-Based Synthesis Methods of ZrO2 ( comparison-between-solution-based-synthesis-methods-zro2 )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 017

Energies 2022, 15, 6452 17 of 21 References 101008701, and to the European Community’s H2020 program under grant agreement No. 787410 (ERC-2018-AdG DIGISMART). Data Availability Statement: The authors confirm that the data supporting the findings of this study are available within the article and its Supplementary Materials. Conflicts of Interest: The authors declare no conflict of interest. 1. Shah, N.A.; Gul, M.; Abbas, M.; Amin, M. Synthesis of Metal Oxide Semiconductor Nanostructures for Gas Sensors. In Gas Sensors; IntechOpen: London, UK, 2019; ISBN 978-1-78985-160-1. 2. Roco, M.C.; Mirkin, C.A.; Hersam, M.C. Nanotechnology research directions for societal needs in 2020: Summary of international study. J. Nanoparticle Res. 2011, 13, 897–919. [CrossRef] 3. Chavali, M.S.; Nikolova, M.P. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl. Sci. 2019, 1, 1–30. [CrossRef] 4. Ahmad, T.; Shahazad, M.; Phul, R. Hydrothermal synthesis, characterization and dielectric properties of zirconia nanoparticles. Mater. Sci. Eng. Int. J. 2017, 1, 100–104. [CrossRef] 5. Nunes, D.; Pimentel, A.; Gonçalves, A.; Pereira, S.; Branquinho, R.; Barquinha, P.; Martins, R. Metal Oxide Nanostructures for Sensor Applications. Semicond. Sci. Technol. 2019, 34, 1–178. [CrossRef] 6. Nunes, D.; Pimentel, A.; Santos, L.; Barquinha, P.; Pereira, L.; Fortunato, E.; Martins, R.; Pimentel, A.; Barquinha, P.; Pereira, L.; et al. Metal Oxide Nanostructures: Synthesis, Properties and Applications, 1st ed.; Korotcenkov, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128115121. 7. Nunes, D.; Fortunato, E.; Martins, R. Flexible nanostructured TiO2-based gas and UV sensors: A review. Discov. Mater. 2022, 2, 1–23. [CrossRef] 8. Nunes, D.; Pimentel, A.; Branquinho, R.; Fortunato, E.; Martins, R. Metal oxide-based photocatalytic paper: A green alternative for environmental remediation. Catalysts 2021, 11, 504. [CrossRef] 9. Vaidya, S.; Ahmad, T.; Agarwal, S.; Ganguli, A.K. Nanocrystalline Oxalate/Carbonate Precursors of Ce and Zr and Their Decompositions to CeO2 and ZrO2 Nanoparticles. J. Am. Ceram. Soc. 2007, 90, 863–869. [CrossRef] 10. Behbahani, A.; Rowshanzamir, S.; Esmaeilifar, A. Hydrothermal Synthesis of Zirconia Nanoparticles from Commercial Zirconia. Procedia Eng. 2012, 42, 908–917. [CrossRef] 11. Van Tran, T.; Nguyen, D.T.C.; Kumar, P.S.; Din, A.T.M.; Jalil, A.A.; Vo, D.V.N. Green synthesis of ZrO2 nanoparticles and nanocomposites for biomedical and environmental applications: A review. Environ. Chem. Lett. 2022, 20, 1309–1331. [CrossRef] 12. Hassan, N.S.; Jalil, A.A. A review on self-modification of zirconium dioxide nanocatalysts with enhanced visible-light-driven photodegradation of organic pollutants. J. Hazard. Mater. 2022, 423 (Pt A), 126996. [CrossRef] 13. Liu, B.; Wang, C.; Chen, Y.; -Structural, A.; Properties of, L.Y.; Zirconia Nanopowders Korsunska, C.-C.N.; Baran, M.; Polishchuk, Y.; Horti, N.C.; Kamatagi, M.D.; et al. Structural and optical properties of zirconium oxide (ZrO2) nanoparti- cles: Effect of calcination temperature. Nano Express 2020, 1, 1–10. [CrossRef] 14. Boratto, M.H.; Lima, J.V.M.; Scalvi, L.V.A.; Graeff, C.F.O. Low-temperature ZrO2 thin films obtained by polymeric route for electronic applications. J. Mater. Sci. Mater. Electron. 2020, 31, 16065–16072. [CrossRef] 15. Namavar, F.; Wang, G.; Cheung, C.L.; Sabirianov, R.F.; Zeng, X.C.; Mei, W.N.; Bai, J.; Brewer, J.R.; Haider, H.; Garvin, K.L. Thermal stability of nanostructurally stabilized zirconium oxide. Nanotechnology 2007, 18, 1–6. [CrossRef] 16. Abd El-Lateef, H.M.; Khalaf, M.M. Corrosion resistance of ZrO2–TiO2 nanocomposite multilayer thin films coated on carbon steel in hydrochloric acid solution. Mater. Charact. 2015, 108, 29–41. [CrossRef] 17. Septawendar, R.; Sutardi, S.; Karsono, U.; Sofiyaningsih, N. A Low-Cost, Facile Method on Production of Nano Zirconia and Silica from Local Zircon in a Large Scale Using a Sodium Carbonate Sintering Technology. J. Aust. Ceram. Soc. 2016, 52, 92–102. 18. Xifeng, L.; Enlong, X.; Jianhua, Z. Low-temperature solution-processed zirconium oxide gate insulators for thin-film transistors. IEEE Trans. Electron Devices 2013, 60, 3413–3416. [CrossRef] 19. Chang, J.P.; Lin, Y.S. Dielectric property and conduction mechanism of ultrathin zirconium oxide films. Appl. Phys. Lett. 2001, 79, 3666. [CrossRef] 20. Zandiehnadem, F.; Murray, R.A.; Ching, W.Y. Electronic structures of three phases of zirconium oxide. Physica B+C 1988, 150, 19–24. [CrossRef] 21. Králik, B.; Chang, E.K.; Louie, S.G. Structural properties and quasiparticle band structure of zirconia. Phys. Rev. B Condens. Matter 1998, 57, 7027–7036. [CrossRef] 22. Poungchan, G.; Ksapabutr, B.; Panapoy, M. One-step synthesis of flower-like carbon-doped ZrO2 for visible-light-responsive photocatalyst. Mater. Des. 2016, 89, 137–145. [CrossRef] 23. Soares, M.R.N. Development of Zirconia Based Phosphors for Application in Lighting and as Luminescent Bioprobes. Ph.D. Thesis, University of Aveiro, Aveiro, Portugal, 2016. Available online: https://ria.ua.pt/handle/10773/15884 (accessed on 21 July 2022).

PDF Image | Comparison between Solution-Based Synthesis Methods of ZrO2

comparison-between-solution-based-synthesis-methods-zro2-017

PDF Search Title:

Comparison between Solution-Based Synthesis Methods of ZrO2

Original File Name Searched:

energies-15-06452.pdf

DIY PDF Search: Google It | Yahoo | Bing

Turbine and System Plans CAD CAM: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. More Info

Waste Heat Power Technology: Organic Rankine Cycle uses waste heat to make electricity, shaft horsepower and cooling. More Info

All Turbine and System Products: Infinity Turbine ORD systems, turbine generator sets, build plans and more to use your waste heat from 30C to 100C. More Info

CO2 Phase Change Demonstrator: CO2 goes supercritical at 30 C. This is a experimental platform which you can use to demonstrate phase change with low heat. Includes integration area for small CO2 turbine, static generator, and more. This can also be used for a GTL Gas to Liquids experimental platform. More Info

Introducing the Infinity Turbine Products Infinity Turbine develops and builds systems for making power from waste heat. It also is working on innovative strategies for storing, making, and deploying energy. More Info

Need Strategy? Use our Consulting and analyst services Infinity Turbine LLC is pleased to announce its consulting and analyst services. We have worked in the renewable energy industry as a researcher, developing sales and markets, along with may inventions and innovations. More Info

Made in USA with Global Energy Millennial Web Engine These pages were made with the Global Energy Web PDF Engine using Filemaker (Claris) software.

Sand Battery Sand and Paraffin for TES Thermo Energy Storage More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP