logo

Comparison between Solution-Based Synthesis Methods of ZrO2

PDF Publication Title:

Comparison between Solution-Based Synthesis Methods of ZrO2 ( comparison-between-solution-based-synthesis-methods-zro2 )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 018

Energies 2022, 15, 6452 18 of 21 24. Nova, C.V.; Reis, K.A.; Pinheiro, A.L.; Dalmaschio, C.J.; Chiquito, A.J.; Teodoro, M.D.; Rodrigues, A.D.; Longo, E.; Pontes, F.M. Synthesis, characterization, photocatalytic, and antimicrobial activity of ZrO2 nanoparticles and Ag@ZrO2 nanocomposite prepared by the advanced oxidative process/hydrothermal route. J. Sol-Gel Sci. Technol. 2021, 98, 113–126. [CrossRef] 25. Stolzenburg, P.; Freytag, A.; Bigall, N.C.; Garnweitner, G. Fractal growth of ZrO2 nanoparticles induced by synthesis conditions. CrystEngComm 2016, 18, 8396–8405. [CrossRef] 26. Rafiq Hussain Siddiqui, M.; Ibrahim Al-Wassil, A.; Mohmmed Al-Otaibi, A.; Mohamad Mahfouz, R. Effects of Precursor on the Morphology and Size of ZrO2 Nanoparticles, Synthesized by Sol-gel Method in Non-aqueous Medium. Mater. Res. 2012, 15, 986–989. [CrossRef] 27. Pang, Q.; Chen, H.; Wang, X.; Wang, T.; Wang, D.; Feng, S.; Lu, H.; Li, Q. Field Effect Transistors Based on In Situ Fabricated Graphene Scaffold–ZrO2 Nanofilms. Adv. Electron. Mater. 2018, 4, 1–6. [CrossRef] 28. Sani, E.; Sciti, D.; Capiani, C.; Silvestroni, L. Colored zirconia with high absorbance and solar selectivity. Scr. Mater. 2020, 186, 147–151. [CrossRef] 29. Sani, E.; Mercatelli, L.; Sans, J.L.; Sciti, D. Optical properties of black and white ZrO2 for solar receiver applications. Sol. Energy Mater. Sol. Cells 2015, 140, 477–482. [CrossRef] 30. Silvestroni, L.; Capiani, C.; Sciti, D.; Sani, E. Coloring zirconium oxide for novel energy saving industrial applications. Renew. Energy 2022, 190, 223–231. [CrossRef] 31. Silva, J.P.B.; Silva, J.M.B.; Sekhar, K.C.; Palneedi, H.; Istrate, M.C.; Negrea, R.F.; Ghica, C.; Chahboun, A.; Pereira, M.; Gomes, M.J.M. Energy storage performance of ferroelectric ZrO2 film capacitors: Effect of HfO2:Al2O3 dielectric insert layer. J. Mater. Chem. A 2020, 8, 14171–14177. [CrossRef] 32. Pešic ́, M.; Hoffmann, M.; Richter, C.; Mikolajick, T.; Schroeder, U. Nonvolatile Random Access Memory and Energy Storage Based on Antiferroelectric Like Hysteresis in ZrO2. Adv. Funct. Mater. 2016, 26, 7486–7494. [CrossRef] 33. Wang, Y.; Wang, Y.; Zeng, H.; Wei, X. Ultra-high energy storage density of transparent capacitors based on linear dielectric ZrO2 thin films with the thickness scaled up to hundreds nanometers. Appl. Phys. Lett. 2022, 120, 023904. [CrossRef] 34. Nunes, D.; Vilarigues, M.; Correia, J.B.; Carvalho, P.A. Nickel–carbon nanocomposites: Synthesis, structural changes and strengthening mechanisms. Acta Mater. 2012, 60, 737–747. [CrossRef] 35. Vidya, Y.S.; Anantharaju, K.S.; Nagabhushana, H.; Sharma, S.C.; Nagaswarupa, H.P.; Prashantha, S.C.; Shivakumara, C. Danithkumar Combustion synthesized tetragonal ZrO2: Eu3+ nanophosphors: Structural and photoluminescence studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 135, 241–251. [CrossRef] [PubMed] 36. Bumajdad, A.; Nazeer, A.A.; Al Sagheer, F.; Nahar, S.; Zaki, M.I. Controlled Synthesis of ZrO2 Nanoparticles with Tailored Size, Morphology and Crystal Phases via Organic/Inorganic Hybrid Films. Sci. Rep. 2018, 8, 3695. [CrossRef] [PubMed] 37. Jiang, C.; Wang, F.; Wu, N.; Liu, X. Up- and down-conversion cubic zirconia and hafnia nanobelts. Adv. Mater. 2008, 20, 4826–4829. [CrossRef] 38. Cao, H.; Qiu, X.; Luo, B.; Liang, Y.; Zhang, Y.; Tan, R.; Zhao, M.; Zhu, Q. Synthesis and Room-Temperature Ultraviolet Photoluminescence Properties of Zirconia Nanowires. Adv. Funct. Mater. 2004, 14, 1–4. [CrossRef] 39. Ste ̨pien ́, M.; Handzlik, P.; Fitzner, K. Synthesis of ZrO2 nanotubes in inorganic and organic electrolytes by anodic oxidation of zirconium. J. Solid State Electrochem. 2014, 18, 3081–3090. [CrossRef] 40. Mangla, O.; Roy, S. Monoclinic Zirconium Oxide Nanostructures Having Tunable Band Gap Synthesized under Extremely Non-Equilibrium Plasma Conditions. Proceedings 2019, 3, 10. [CrossRef] 41. Yue, M.; Cui, M.; Zhang, N.; Long, Z.; Huang, X. Characterization of CeO2-ZrO2 mixed oxides prepared by two different co-precipitation methods. J. Rare Earths 2013, 31, 251–256. [CrossRef] 42. Lim, H.S.; Ahmad, A.; Hamzah, H. Synthesis of zirconium oxide nanoparticle by sol-gel technique. AIP Conf. Proc. 2013, 1571, 812. [CrossRef] 43. Zinatloo-Ajabshir, S.; Salavati-Niasari, M. Synthesis of pure nanocrystalline ZrO2 via a simple sonochemical-assisted route. J. Ind. Eng. Chem. 2014, 20, 3313–3319. [CrossRef] 44. Liang, J.; Jiang, X.; Liu, G.; Deng, Z.; Zhuang, J.; Li, F.; Li, Y. Characterization and synthesis of pure ZrO2 nanopowders via sonochemical method. Mater. Res. Bull. 2003, 38, 161–168. [CrossRef] 45. Beer, S.M.J.; Samelor, D.; Abdel Aal, A.; Etzkorn, J.; Rogalla, D.; Turgambaeva, A.E.; Esvan, J.; Kostka, A.; Vahlas, C.; Devi, A. Direct liquid injection chemical vapor deposition of ZrO2 films from a heteroleptic Zr precursor: Interplay between film characteristics and corrosion protection of stainless steel. J. Mater. Res. Technol. 2021, 13, 1599–1614. [CrossRef] 46. Chang, Y.; Li, X. Bin Preparation of ZrO2 spherical nanometer powders by emulsion processing route. Trans. Nonferrous Met. Soc. China 2006, 16, s332–s336. [CrossRef] 47. Lee, M.H.; Tai, C.Y.; Lu, C.H. Synthesis of spherical zirconia by reverse emulsion precipitation. Korean J. Chem. Eng. 1999, 16, 818–822. [CrossRef] 48. Zhao, N.; Pan, D.; Nie, W.; Ji, X. Two-phase synthesis of shape-controlled colloidal zirconia nanocrystals and their characterization. J. Am. Chem. Soc. 2006, 128, 10118–10124. [CrossRef] 49. Guo, M.; Wang, G.; Zhao, Y.; Li, H.; Tang, K.; Zhao, Y.; Burgess, K. Preparation of Nano-ZrO2 powder via a microwave-assisted hydrothermal method. Ceram. Int. 2021, 47, 12425–12432. [CrossRef]

PDF Image | Comparison between Solution-Based Synthesis Methods of ZrO2

comparison-between-solution-based-synthesis-methods-zro2-018

PDF Search Title:

Comparison between Solution-Based Synthesis Methods of ZrO2

Original File Name Searched:

energies-15-06452.pdf

DIY PDF Search: Google It | Yahoo | Bing

Turbine and System Plans CAD CAM: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. More Info

Waste Heat Power Technology: Organic Rankine Cycle uses waste heat to make electricity, shaft horsepower and cooling. More Info

All Turbine and System Products: Infinity Turbine ORD systems, turbine generator sets, build plans and more to use your waste heat from 30C to 100C. More Info

CO2 Phase Change Demonstrator: CO2 goes supercritical at 30 C. This is a experimental platform which you can use to demonstrate phase change with low heat. Includes integration area for small CO2 turbine, static generator, and more. This can also be used for a GTL Gas to Liquids experimental platform. More Info

Introducing the Infinity Turbine Products Infinity Turbine develops and builds systems for making power from waste heat. It also is working on innovative strategies for storing, making, and deploying energy. More Info

Need Strategy? Use our Consulting and analyst services Infinity Turbine LLC is pleased to announce its consulting and analyst services. We have worked in the renewable energy industry as a researcher, developing sales and markets, along with may inventions and innovations. More Info

Made in USA with Global Energy Millennial Web Engine These pages were made with the Global Energy Web PDF Engine using Filemaker (Claris) software.

Sand Battery Sand and Paraffin for TES Thermo Energy Storage More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP