Comparison between Solution-Based Synthesis Methods of ZrO2

PDF Publication Title:

Comparison between Solution-Based Synthesis Methods of ZrO2 ( comparison-between-solution-based-synthesis-methods-zro2 )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 019

Energies 2022, 15, 6452 19 of 21 50. Gonell, F.; Portehault, D.; Julián-López, B.; Vallé, K.; Sanchez, C.; Corma, A. One step microwave-assisted synthesis of nanocrys- talline WOx–ZrO2 acid catalysts. Catal. Sci. Technol. 2016, 6, 8257–8267. [CrossRef] 51. Bondioli, F.; Bonamartini Corradi, A.; Ferrari, A.M.; Leonelli, C. Synthesis of Zirconia Nanoparticles in a Continuous-Flow Microwave Reactor. J. Am. Ceram. Soc. 2008, 91, 3746–3748. [CrossRef] 52. Kim, J.R.; Myeong, W.J.; Ihm, S.K. Characteristics of CeO2–ZrO2 mixed oxide prepared by continuous hydrothermal synthesis in supercritical water as support of Rh catalyst for catalytic reduction of NO by CO. J. Catal. 2009, 263, 123–133. [CrossRef] 53. Li, Q.; Liu, L.; Wang, Z.; Wang, X. Continuous Hydrothermal Flow Synthesis and Characterization of ZrO2 Nanoparticles Doped with CeO2 in Supercritical Water. Nanomaterials 2022, 12, 668. [CrossRef] 54. Hobbs, H.; Briddon, S.; Lester, E. The synthesis and fluorescent properties of nanoparticulate ZrO2 doped with Eu using continuous hydrothermal synthesis. Green Chem. 2009, 11, 484–491. [CrossRef] 55. Dudnik, E.V. Modern methods for hydrothermal synthesis of ZrO2-based nanocrystalline powders. Powder Metall. Met. Ceram. 2009, 48, 238–248. [CrossRef] 56. Liu, L.; Wang, S.; Zhang, B.; Jiang, G.; Yang, J. Supercritical hydrothermal synthesis of nano-ZrO2: Influence of technological parameters and mechanism. J. Alloy. Compd. 2022, 898, 16287. [CrossRef] 57. Darr, J.A.; Zhang, J.; Makwana, N.M.; Weng, X. Continuous Hydrothermal Synthesis of Inorganic Nanoparticles: Applications and Future Directions. Chem. Rev. 2017, 117, 11125–11238. [CrossRef] 58. Ponkumar, S.; Janaki, K.; Prakashbabu, D.; B Ramalingam, H.; Munirathnam, K.; Hari Krishna, R. Solution Combustion Synthesis of ZrO2:Tb3+ Nanophosphors Viable for WLEDs. Mater. Today Proc. 2018, 5, 10717–10721. [CrossRef] 59. Samantaray, S.; Mishra, B.G.; Pradhan, D.K.; Hota, G. Solution combustion synthesis and physicochemical characterization of ZrO2-MoO3 nanocomposite oxides prepared using different fuels. Ceram. Int. 2011, 37, 3101–3108. [CrossRef] 60. Purohit, R.D.; Saha, S.; Tyagi, A.K. Combustion synthesis of nanocrystalline ZrO2 powder: XRD, Raman spectroscopy and TEM studies. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2006, 130, 57–60. [CrossRef] 61. Carlos, E.; Martins, R.; Fortunato, E.; Branquinho, R. Solution Combustion Synthesis: Towards a Sustainable Approach for Metal Oxides. Chem.—A Eur. J. 2020, 26, 9099–9125. [CrossRef] 62. Branquinho, R.; Santa, A.; Carlos, E.; Salgueiro, D.; Barquinha, P.; Martins, R.; Fortunato, E. Solution Combustion Syn- thesis: Applications in Oxide Electronics. In Developments in Combustion Technology; IntechOpen: London, UK, 2016; ISBN 978-953-51-2669-0. 63. Moreira, M.; Carlos, E.; Dias, C.; Deuermeier, J.; Pereira, M.; Barquinha, P.; Branquinho, R.; Martins, R.; Fortunato, E. Tailoring IGZO Composition for Enhanced Fully Solution-Based Thin Film Transistors. Nanomaterials 2019, 9, 1273. [CrossRef] 64. Merten, D.; Broekaert, J.A.C.; Brandt, R.; Jakubowski, N. Analysis of ZrO2 powders by microwave assisted digestion at high pressure and ICP atomic spectrometry. J. Anal. At. Spectrom. 1999, 14, 1093–1098. [CrossRef] 65. Iqbal, Z.; Sadiq, S.; Sadiq, M.; Khan, I.; Saeed, K. Effect of Microwave Irradiation on the Catalytic Activity of Tetragonal Zirconia: Selective Hydrogenation of Aldehyde. Arab. J. Sci. Eng. 2021, 47, 5841–5848. [CrossRef] 66. Srikalyani, C.H.; Sultana, S. Microwave Synthesis of ZrO2 Nanoparticles and its Reinforcement in Geo-Polymer gel. Int. J. ChemTech Res. 2017, 10, 1–6. 67. Goharshadi, E.K.; Hadadian, M. Effect of calcination temperature on structural, vibrational, optical, and rheological properties of zirconia nanoparticles. Ceram. Int. 2012, 38, 1771–1777. [CrossRef] 68. Padovini, D.S.S.; Pontes, D.S.L.; Dalmaschio, C.J.; Pontes, F.M.; Longo, E. Facile synthesis and characterization of ZrO2 nanoparti- cles prepared by the AOP/hydrothermal route. RSC Adv. 2014, 4, 38484–38490. [CrossRef] 69. Liu, G.X.; Liu, A.; Meng, Y.; Shan, F.K.; Shin, B.C.; Lee, W.J.; Cho, C.R. Annealing dependence of solution-processed ultra-thin ZrOx films for gate dielectric applications. J. Nanosci. Nanotechnol. 2015, 15, 2185–2191. [CrossRef] 70. Valle, H.R.L. Effect of Eco-Friendly Solvents in Solution-Based ZrOx Dielectrics. Master’s Thesis, FCT-UNL, Caparica, Portugal, 2019. Available online: https://run.unl.pt/handle/10362/91651 (accessed on 21 July 2022). 71. Seon, J.B.; Cho, N.K.; Yoo, G.; Kim, Y.S.; Char, K. Solution-processed amorphous ZrO2 gate dielectric films synthesized by a non-hydrolytic sol–gel route. RSC Adv. 2018, 8, 39115–39119. [CrossRef] 72. Gong, Y.; Zhao, K.; He, H.; Cai, W.; Tang, N.; Ning, H.; Wu, S.; Gao, J.; Zhou, G.; Lu, X.; et al. Solution processable high quality ZrO2 dielectric films for low operation voltage and flexible organic thin film transistor applications. J. Phys. D Appl. Phys. 2018, 51, 115105. [CrossRef] 73. Wang, S.; Xia, G. A facile low-cost preparation of high-k ZrO2 dielectric films for superior thin-film transistors. Ceram. Int. 2019, 45, 23666–23672. [CrossRef] 74. Jung, S.H.; Han, H.S.; Kim, Y.B.; Kim, D.S.; Deshpande, N.G.; Oh, S.J.; Choi, J.H.; Cho, H.K. Toward ultraviolet solution processed ZrOx/IZO transistors with top-gate and dual-gate operation: Selection of solvents, precursors, stabilizers, and additive elements. J. Alloy. Compd. 2020, 847, 156431. [CrossRef] 75. Luo, C.; Huang, T.; Li, C.; Zhang, Y.; Zou, Z.; Li, Y.; Tao, R.; Gao, J.; Zhou, G.; Lu, X.; et al. Enhancement of electrical properties of solution-processed oxide thin film transistors using ZrO2 gate dielectrics deposited by an oxygen-doped solution. J. Phys. D Appl. Phys. 2021, 54, 125101. [CrossRef] 76. Aminipoya, H.; Ghomi, A.B.; Niazi, A. Comparative synthesis of ZrO2 nanoparticles by green and co-precipitation methods: The effect of template on structure. Int. J. Nano Dimens 2021, 12, 59–66.

PDF Image | Comparison between Solution-Based Synthesis Methods of ZrO2

PDF Search Title:

Comparison between Solution-Based Synthesis Methods of ZrO2

Original File Name Searched:

energies-15-06452.pdf

DIY PDF Search: Google It | Yahoo | Bing

Turbine and System Plans CAD CAM: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. More Info

Waste Heat Power Technology: Organic Rankine Cycle uses waste heat to make electricity, shaft horsepower and cooling. More Info

All Turbine and System Products: Infinity Turbine ORD systems, turbine generator sets, build plans and more to use your waste heat from 30C to 100C. More Info

CO2 Phase Change Demonstrator: CO2 goes supercritical at 30 C. This is a experimental platform which you can use to demonstrate phase change with low heat. Includes integration area for small CO2 turbine, static generator, and more. This can also be used for a GTL Gas to Liquids experimental platform. More Info

Introducing the Infinity Turbine Products Infinity Turbine develops and builds systems for making power from waste heat. It also is working on innovative strategies for storing, making, and deploying energy. More Info

Need Strategy? Use our Consulting and analyst services Infinity Turbine LLC is pleased to announce its consulting and analyst services. We have worked in the renewable energy industry as a researcher, developing sales and markets, along with may inventions and innovations. More Info

Made in USA with Global Energy Millennial Web Engine These pages were made with the Global Energy Web PDF Engine using Filemaker (Claris) software.

Sand Battery Sand and Paraffin for TES Thermo Energy Storage More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)