Comparison between Solution-Based Synthesis Methods of ZrO2

PDF Publication Title:

Comparison between Solution-Based Synthesis Methods of ZrO2 ( comparison-between-solution-based-synthesis-methods-zro2 )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 020

Energies 2022, 15, 6452 20 of 21 77. Ji, P.; Wang, Z.; Shang, X.; Zhang, Y.; Liu, Y.; Mao, Z.; Shi, X. Direct observation of enhanced Raman scattering on nano-sized ZrO2 substrate: Charge-transfer contribution. Front. Chem. 2019, 7, 245. [CrossRef] [PubMed] 78. Soares, M.R.N.; Nico, C.; Peres, M.; Ferreira, N.; Fernandes, A.J.S.; Monteiro, T.; Costa, F.M. Structural and optical properties of europium doped zirconia single crystals fibers grown by laser floating zone. J. Appl. Phys. 2011, 109, 013516. [CrossRef] 79. Merle, T.; Guinebretiere, R.; Mirgorodsky, A.; Quintard, P. Polarized Raman spectra of tetragonal pure ZrO2 measured on epitaxial films. Phys. Rev. B—Condens. Matter Mater. Phys. 2002, 65, 1443021–1443026. [CrossRef] 80. Fernandez Lopez, E.; Sanchez Escribano, V.; Panizza, M.; Carnasciali, M.M.; Busca, G. Vibrational and electronic spectroscopic properties of zirconia powders. J. Mater. Chem. 2001, 11, 1891–1897. [CrossRef] 81. Ding, S.; Zhao, J.; Yu, Q. Effect of zirconia polymorph on vapor-phase ketonization of propionic acid. Catalysts 2019, 9, 768. [CrossRef] 82. Gopal, R.; Jain, J.; Goyal, A.; Gupta, D.K.; Nagar, M. Formation of nano-sized cubic zirconia by aqueous sol–gel route. J. Aust. Ceram. Soc. 2018, 54, 691–700. [CrossRef] 83. Basahel, S.N.; Ali, T.T.; Mokhtar, M.; Narasimharao, K. Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res. Lett. 2015, 10, 73. [CrossRef] 84. Lopes, D. Low-Cost Upconversion Nanomaterials for Anti-Counterfeiting Solutions. Master’s Thesis, FCT-UNL, Caparica, Portugal, 2020. Available online: https://run.unl.pt/handle/10362/113701 (accessed on 22 July 2022). 85. Prasad, K.; Pinjari, D.V.; Pandit, A.B.; Mhaske, S.T. Synthesis of zirconium dioxide by ultrasound assisted precipitation: Effect of calcination temperature. Ultrason. Sonochemistry 2011, 18, 1128–1137. [CrossRef] 86. Carvalho, J.M.; Rodrigues, L.C.V.; Felinto, M.C.F.C.; Nunes, L.A.O.; Hölsä, J.; Brito, H.F. Structure–property relationship of luminescent zirconia nanomaterials obtained by sol–gel method. J. Mater. Sci. 2015, 50, 873–881. [CrossRef] 87. Kiisk, V.; Puust, L.; Utt, K.; Maaroos, A.; Mändar, H.; Viviani, E.; Piccinelli, F.; Saar, R.; Joost, U.; Sildos, I. Photo-, thermo- and optically stimulated luminescence of monoclinic zirconia. J. Lumin. 2016, 174, 49–55. [CrossRef] 88. Lokesha, H.S.; Nagabhushana, K.R.; Singh, F.; Tatumi, S.H.; Prinsloo, A.R.E.; Sheppard, C.J. Unraveling the Charge State of Oxygen Vacancies in Monoclinic ZrO2 and Spectroscopic Properties of ZrO2:Sm 3+ Phosphor. J. Phys. Chem. C 2021, 125, 27106–27117. [CrossRef] 89. Perevalov, T.V.; Gulyaev, D.V.; Aliev, V.S.; Zhuravlev, K.S.; Gritsenko, V.A.; Yelisseyev, A.P. The origin of 2.7 eV blue luminescence band in zirconium oxide. J. Appl. Phys. 2014, 116, 244109. [CrossRef] 90. Ashraf, S.; Irfan, M.; Kim, D.; Jang, J.-H.; Han, W.-T.; Jho, Y.-D. Optical influence of annealing in nano- and submicron-scale ZrO2 powders. Ceram. Int. 2014, 40, 8513–8518. [CrossRef] 91. Jiang, H.; Gomez-Abal, R.I.; Rinke, P.; Scheffler, M. Electronic band structure of zirconia and hafnia polymorphs from the GW perspective. Phys. Rev. B 2010, 81, 085119. [CrossRef] 92. Gallino, F.; Di Valentin, C.; Pacchioni, G. Band gap engineering of bulk ZrO2 by Ti doping. Phys. Chem. Chem. Phys. 2011, 13, 17667–17675. [CrossRef] 93. Li, J.; Meng, S.; Niu, J.; Lu, H. Electronic structures and optical properties of monoclinic ZrO2 studied by first-principles local density approximation + U approach. J. Adv. Ceram. 2017, 6, 43–49. [CrossRef] 94. Singh, H.; Sunaina; Yadav, K.K.; Bajpai, V.K.; Jha, M. Tuning the bandgap of m-ZrO2 by incorporation of copper nanoparticles into visible region for the treatment of organic pollutants. Mater. Res. Bull. 2020, 123, 110698. [CrossRef] 95. Teeparthi, S.R.; Awin, E.W.; Kumar, R. Dominating role of crystal structure over defect chemistry in black and white zirconia on visible light photocatalytic activity. Sci. Rep. 2018, 8, 5541. [CrossRef] 96. Sakfali, J.; Ben Chaabene, S.; Akkari, R.; Dappozze, F.; Berhault, G.; Guillard, C.; Saïd Zina, M. High photocatalytic activity of aerogel tetragonal and monoclinic ZrO2 samples. J. Photochem. Photobiol. A Chem. 2022, 430, 113970. [CrossRef] 97. Smits, K.; Grigorjeva, L.; Millers, D.; Sarakovskis, A.; Grabis, J.; Lojkowski, W. Intrinsic defect related luminescence in ZrO2. J. Lumin. 2011, 131, 2058–2062. [CrossRef] 98. Sil, A.; Goldfine, E.A.; Huang, W.; Bedzyk, M.J.; Medvedeva, J.E.; Facchetti, A. Role of Fluoride Doping in Low-Temperature Combustion-Synthesized ZrOx Dielectric Films. ACS Appl. Mater. Interfaces 2022, 14, 12340–12349. [CrossRef] 99. Pradhan, S.; Mishra, B.G. Catalytic application of SO42-/Fe-ZrO2 nanoparticles synthesized by a urea hydrolysis method for environmentally benign one pot synthesis of 1,8-dioxodecahydroacridines. RSC Adv. 2015, 5, 86179–86190. [CrossRef] 100. Cai,W.;Zhu,Z.;Wei,J.;Fang,Z.;Ning,H.;Zheng,Z.;Zhou,S.;Yao,R.;Peng,J.;Lu,X.Asimplemethodforhigh-performance, solution-processed, amorphous ZrO2 gate insulator TFT with a high concentration precursor. Materials 2017, 10, 972. [CrossRef] [PubMed] 101. Meng,Y.;Liu,G.;Liu,A.;Song,H.;Hou,Y.;Shin,B.;Shan,F.Low-temperaturefabricationofhighperformanceindiumoxide thin film transistors. RSC Adv. 2015, 5, 37807–37813. [CrossRef] 102. Zhu,L.;He,G.;Lv,J.;Fortunato,E.;Martins,R.Fullysolution-inducedhighperformanceindiumoxidethinfilmtransistorswith ZrOx high-k gate dielectrics. RSC Adv. 2018, 8, 16788–16799. [CrossRef] 103. Lee,H.;Zhang,X.;Kim,J.W.;Kim,E.J.;Park,J.InvestigationoftheElectricalCharacteristicsofBilayerZnO/In2O3Thin-Film Transistors Fabricated by Solution Processing. Materials 2018, 11, 2103. [CrossRef] 104. Oluwabi,A.T.;Katerski,A.;Carlos,E.;Branquinho,R.;Mere,A.;Krunks,M.;Fortunato,E.;Pereira,L.;OjaAcik,I.Applicationof ultrasonic sprayed zirconium oxide dielectric in zinc tin oxide-based thin film transistor. J. Mater. Chem. C 2020, 8, 3730–3739. [CrossRef]

PDF Image | Comparison between Solution-Based Synthesis Methods of ZrO2

PDF Search Title:

Comparison between Solution-Based Synthesis Methods of ZrO2

Original File Name Searched:

energies-15-06452.pdf

DIY PDF Search: Google It | Yahoo | Bing

Turbine and System Plans CAD CAM: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. More Info

Waste Heat Power Technology: Organic Rankine Cycle uses waste heat to make electricity, shaft horsepower and cooling. More Info

All Turbine and System Products: Infinity Turbine ORD systems, turbine generator sets, build plans and more to use your waste heat from 30C to 100C. More Info

CO2 Phase Change Demonstrator: CO2 goes supercritical at 30 C. This is a experimental platform which you can use to demonstrate phase change with low heat. Includes integration area for small CO2 turbine, static generator, and more. This can also be used for a GTL Gas to Liquids experimental platform. More Info

Introducing the Infinity Turbine Products Infinity Turbine develops and builds systems for making power from waste heat. It also is working on innovative strategies for storing, making, and deploying energy. More Info

Need Strategy? Use our Consulting and analyst services Infinity Turbine LLC is pleased to announce its consulting and analyst services. We have worked in the renewable energy industry as a researcher, developing sales and markets, along with may inventions and innovations. More Info

Made in USA with Global Energy Millennial Web Engine These pages were made with the Global Energy Web PDF Engine using Filemaker (Claris) software.

Sand Battery Sand and Paraffin for TES Thermo Energy Storage More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)