logo

Low-Cost Particulates Used as Energy Storage and Heat-Transfer Medium

PDF Publication Title:

Low-Cost Particulates Used as Energy Storage and Heat-Transfer Medium ( low-cost-particulates-used-as-energy-storage-and-heat-transf )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 019

Materials 2022, 15, 2946 19 of 20 20. Tescari, S.; Breuer, S.; Roeb, M.; Sattler, C.; Flucht, F.; Schmücker, M.; Karagiannakis, G.; Pagkoura, C.; Konstandopoulos, A.G. Design of a Thermochemical Storage System for Air-operated Solar Tower Power Plants. Energy Procedia 2015, 69, 1039–1048. [CrossRef] 21. Calderón, A.; Barreneche, C.; Palacios, A.; Segarra, M.; Prieto, C.; Rodriguez-Sanchez, A.; Fernandez, A.I. Review of solid particle materials for heat transfer fluid and thermal energy storage in solar thermal power plants. Energy Storage 2019, 1, e63. [CrossRef] 22. Gimeno-Furio, A.; Hernandez, L.; Martinez-Cuenca, R.; Mondragón, R.; Vela, A.; Cabedo, L.; Barreneche, C.; Iacob, M. New coloured coatings to enhance silica sand absorbance for direct particle solar receiver applications. Renew. Energy 2020, 152, 1–8. [CrossRef] 23. Kang, Q.; Flamant, G.; Dewil, R.; Baeyens, J.; Zhang, H.L.; Deng, Y.M. Particles in a circulation loop for solar energy capture and storage. Particuology 2019, 43, 149–156. [CrossRef] 24. Siegel, N.; Gross, M.; Ho, C.; Phan, T.; Yuan, J. Physical properties of solid particle thermal energy storage media for concentrating solar power applications. Energy Procedia 2014, 49, 1015–1023. [CrossRef] 25. Palacios, A.; Calderón, A.; Barreneche, C.; Bertomeu, J.; Segarra, M.; Fernández, A.I. Study on solar absorptance and thermal stability of solid particles materials used as TES at high temperature on different aging stages for CSP applications. Sol. Energy Mater. Sol. Cells 2019, 201, 110088. [CrossRef] 26. Nie, F.; Cui, Z.; Bai, F.; Wang, Z. Properties of solid particles as heat transfer fluid in a gravity driven moving bed solar receiver. Sol. Energy Mater. Sol. Cells 2019, 200, 110007. [CrossRef] 27. Diago, M.; Iniesta, A.C.; Soum-Glaude, A.; Calvet, N. Characterization of desert sand to be used as a high-temperature thermal energy storage medium in particle solar receiver technology. Appl. Energy 2018, 216, 402–413. [CrossRef] 28. Calderón, A.; Barreneche, C.; Fernández, A.I.; Segarra, M. Thermal cycling test of solid particles to be used in concentrating solar power plants. Sol. Energy Mater. Sol. Cells 2021, 222, 110936. [CrossRef] 29. Díaz-Heras, M.; Calderón, A.; Navarro, M.; Almendros-Ibáñez, J.A.; Fernández, A.I.; Barreneche, C. Characterization and testing of solid particles to be used in CSP plants: Aging and fluidization tests. Sol. Energy Mater. Sol. Cells 2021, 219, 110793. [CrossRef] 30. Al-Ansary, H.; El-Leathy, A.; Jeter, S.; Golob, M.; Nguyen, C.; Djajadiwinata, E.; Alaqel, S.; Saeed, R.; Abdel-Khalik, S.; Al-Suhaibani, Z.; et al. Design features of the world’s first commercial concentrating solar plant using the particle heating receiver concept. In Proceedings of the ASME 2019 13th International Conference on Energy Sustainability, Bellevue, DC, USA, 15–17 July 2019. Paper No. ES2019-3856. 31. Alaqel, S.; El-Leathy, A.; Al-Ansary, H.; Djajadiwinata, E.; Saleh, N.; Danish, S.; Saeed, R.; Alswaiyd, A.; Al-Suhaibani, Z.; Jeter, S.; et al. Experimental investigation of the performance of a shell-and-tube particle-to-air heat exchanger. Sol. Energy 2020, 204, 561–568. [CrossRef] 32. Al-Ansary, H.; El-Leathy, A.; Alswaiyd, A.; Alaqel, S.; Saleh, N.; Saeed, R.; Al-Suhaibani, Z.; Danish, S.; Djajadiwinata, E.; Jeter, S. Study of the Optimum Discrete Structure Configuration in Obstructed Flow Particle Heating Receivers. In Proceedings of the SolarPACES, Daegu, South Korea, 1–4 October 2019. 33. Al-Ansary, H.; El-Leathy, A.; Saeed, R.; Alswaiyd, A.; Al-Suhaibani, Z.; Danish, S.; Al-Absi, N.; Alaqel, S.; Djajadiwinata, E.; Jeter, S. Material Compatibility Between Discrete Structures in a Particle Heating Receiver and Candidate Particulates. In Proceedings of the SolarPACES, Daegu, South Korea, 1–4 October 2019. 34. Al-Ansary, H.; Danish, S.N.; El-Leathy, A.; Jeter, S.; Golob, M.; Alaqel, S.; Djajadiwinata, E.; Nguyen, C.; Abdel-Khalik, S.; Saad, R.; et al. Assessment of Optical, Physical, & Chemical Properties of Red Sand Used in Long-Term Operation in a PHR Power Tower System. In Proceedings of the SolarPACES Conference 2018, Casablanca, Morocco, 2–5 October 2018. 35. Danish, S.N.; Almutairi, Z.; El-Leathy, A.; Al-Ansary, H.; Jardan, Y.; Alaqel, S. Modeling and Performance Simulation of an Innovative Concept of Linear Fresnel Reflector based CSP System. J. Therm. Sci. 2021, 30, 1614–1624. [CrossRef] 36. Al-Ansary, H.; El-Leathy, A.; Djajadiwinata, E.; Jeter, S.; Golob, M.; Nguyen, C.; Abdel-Khalik, S.; Saad, R.; Danish, S.; Al-Suhaibani, Z. On-Sun Experiments on a Particle Heating Receiver with Red Sand as the Working Medium. In Proceed- ings of the SolarPACES 2017, Santiago, Chile, 27 September 2017. 37. Danish, S.N.; El-Leathy, A.; Alata, M.; Al-Ansary, H. Enhancing Solar Still Performance Using Vacuum Pump and Geothermal Energy. Energies 2019, 12, 539. [CrossRef] 38. Danish, S.N.; El-Leathy, A.; Al-Ansary, H.; Djajadiwinata, E.; Saeed, R.; Ahmad, T.; Nabi, K.; Rizvi, A.; Al-Suhaibani, Z. On-ground Testing of the Thermal Insulation of an Energy Storage Hot Bin Filled with Heated Sand for a Falling Particle Receiver based CSP System. In Proceedings of the SolarPACES 2016, Abu Dhabi, United Arab Emirates, 11–14 October 2016. 39. El-Leathy, A.; Al-Ansary, H.; Danish, S.; Saeed, R.; Djajadiwinata, E.; Al-Suhaibani, Z. Experimental Evaluation of the Performance of a Thermal Energy Storage System used for Solar Energy Applications. In Proceedings of the SolarPACES 2016, Abu Dhabi, United Arab Emirates, 11–14 October 2016. 40. Khan, S.U.-D.; Wazeer, I.; Almutairi, Z.; Khan, S.U.-D. Technical assessment of 10 MW solar thermal plant using nano-fluids and molten salts: A case study of Saudi Arabia. Appl. Nanosci. 2022, 1–8. [CrossRef] 41. El-Leathy, A.; Jeter, S.; Al-Ansary, H.; Abdel-Khalik, S.; Golob, M.; Danish, S.N.; Saeed, R.; Djajadiwinata, E.; Al-Suhaibani, Z. Experimental Measurements of Thermal Properties of High-Temperature Refractory Materials Used for Thermal Energy Storage. In Proceedings of the SolarPACES 2015, Cape Town, South Africa, 13–16 October 2015. 42. Al-Ansary, H.; Djajadiwinata, E.; El-Leathy, A.; Danish, S.N.; Al-Suhaibani, Z. Modeling of transient cyclic behavior of a solid particle thermal energy storage bin for central receiver applications. Energy Procedia 2015, 69, 716–725. [CrossRef]

PDF Image | Low-Cost Particulates Used as Energy Storage and Heat-Transfer Medium

low-cost-particulates-used-as-energy-storage-and-heat-transf-019

PDF Search Title:

Low-Cost Particulates Used as Energy Storage and Heat-Transfer Medium

Original File Name Searched:

materials-15-02946.pdf

DIY PDF Search: Google It | Yahoo | Bing

Turbine and System Plans CAD CAM: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. More Info

Waste Heat Power Technology: Organic Rankine Cycle uses waste heat to make electricity, shaft horsepower and cooling. More Info

All Turbine and System Products: Infinity Turbine ORD systems, turbine generator sets, build plans and more to use your waste heat from 30C to 100C. More Info

CO2 Phase Change Demonstrator: CO2 goes supercritical at 30 C. This is a experimental platform which you can use to demonstrate phase change with low heat. Includes integration area for small CO2 turbine, static generator, and more. This can also be used for a GTL Gas to Liquids experimental platform. More Info

Introducing the Infinity Turbine Products Infinity Turbine develops and builds systems for making power from waste heat. It also is working on innovative strategies for storing, making, and deploying energy. More Info

Need Strategy? Use our Consulting and analyst services Infinity Turbine LLC is pleased to announce its consulting and analyst services. We have worked in the renewable energy industry as a researcher, developing sales and markets, along with may inventions and innovations. More Info

Made in USA with Global Energy Millennial Web Engine These pages were made with the Global Energy Web PDF Engine using Filemaker (Claris) software.

Sand Battery Sand and Paraffin for TES Thermo Energy Storage More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP