logo

Thermal energy storage: Recent developments

PDF Publication Title:

Thermal energy storage: Recent developments ( thermal-energy-storage-recent-developments )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 037

[16] Castellón C, Medrano M, Roca J, Nogués M, Castell A, Cabeza LF. Use of microencapsulated phase change materials in building applications. Build X 2007. [17] Torresol Energy. Gemasolar. ; 2015. [accessed 10.05.15]. [18] Flamant G, Gauthier D, Benoit H, Sans J-L, Boissière B, Ansart R, et al. A new heat transfer fluid for concentrating solar systems: particle flow in tubes. Energy Procedia 2014;49:617–26. doi:10.1016/j.egypro.2014.03.067. [19] Zhang HL, Baeyens J, Degrève J, Pitié F. Latent heat storage with phase change materials (PCMs). J Technol Innov Renew Energy 2013;1–12. [20] Benoit H, Perez I, Gauthier D, Sans J-L, Flamant G. On-sun demonstration of a 750°C heat transfer fluid for concentrating solar systems: dense particle suspension in tube. Sol Energy 2015;118:622–33. [21] Flamant G, Gauthier D, Benoit H, Sans J-L, Garcia R, Boissière B, et al. Dense suspension of solid particles as a new heat transfer fluid for concentrated solar thermal plants: on-sun proof of concept. Chem Eng Sci 2013;102:567–76. doi:10.1016/j.ces.2013.08.051. [22] Maruoka N, Akiyama T. Development of OCM for high temperature application in the steelmaking industry. In: Annex 17, advanced thermal energy storage techniques – feasibility studies and demonstration projects. 3rd Expert. meet. work. annex, vol. 17. Tokyo, Japan: 2002. [23] Maruoka N, Sato K, Yagi J, Akiyama T. Development of PCM for recovering high temperature waste heat and utilization for producing hydrogen by reforming reaction of methane. ISIJ Int 2002;42:215–19. doi:10.2355/ isijinternational.42.215. [24] Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 2009;13:318–45. doi:10.1016/j.rser.2007.10.005. [25] Kearney D, Herrmann U, Nava P, Kelly B, Mahoney R, Pacheco J, et al. Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. J Sol Energy Eng 2003;125:170. doi:10.1115/1.1565087. [26] Abhat A. Low temperature latent heat thermal energy storage: heat storage materials. Sol Energy 1983;30:313–32. doi:10.1016/0038- 092X(83)90186-X. [27] Zhang HL, Baeyens J, Degrève J, Cáceres G, Segal R, Pitié F. Latent heat storage with tubular-encapsulated phase change materials (PCMs). Energy 2014;76:66–72. doi:10.1016/j.energy.2014.03.067. [28] Zhang HL, Benoit H, Gauthier D, Degrève J, Baeyens J, Pérez López I, et al. Particle circulation loops in solar energy capture and storage: gas-solid flow and heat transfer considerations. Appl Energy 2016(161C):206–24. doi:10.1016/j.apenergy.2015.10.005. [29] Dunham MT, Iverson BD. High-efficiency thermodynamic power cycles for concentrated solar power systems. Renew Sustain Energy Rev 2014;30:758–70. doi:10.1016/j.rser.2013.11.010. [30] CSP2. CSP2 project. ; 2015 [accessed 28.01.15]. [31] Cziesla F, Kremer H, Much U, Riemschneider J-E, Quinkertz R. Advanced 800+ MW steam power plants and future CCS options. Siemens Ind Turbomach 2009;1–21. [32] Singer C, Buck R, Pitz-Paal R, Müller-Steinhagen H. Assessment of solar power tower driven ultrasupercritical steam cycles applying tubular central receivers with varied heat transfer media. J Sol Energy Eng 2010;132:041010. doi:10.1115/1.4002137. [33] Spelling J, Gallo A, Romero M, Gonzalez-Aguilar J. A high efficiency solar thermal power plant using a dense particle suspension as heat transfer fluid. Int. Conf. Conc. Sol. Power Chem. Energy Syst., Beijing, China 2014. [34] Kuravi S, Trahan J, Goswami DY, Rahman MM, Stefanakos EK. Thermal energy storage technologies and systems for concentrating solar power plants. Prog Energy Combust Sci 2013;39:285–319. doi:10.1016/j.pecs.2013.02.001. [35] Yu N, Wang RZ, Wang LW. Sorption thermal storage for solar energy. Prog Energy Combust Sci 2013;39:489–514. doi:10.1016/j.pecs.2013.05.004. [36] Zalba B, Marin JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 2003;23:251–83. doi:10.1016/S1359-4311(02)00192-8. [37] Jegadheeswaran S, Pohekar SD. Performance enhancement in latent heat thermal storage system: a review. Renew Sustain Energy Rev 2009;13:2225– 44. doi:10.1016/j.rser.2009.06.024. [38] Abengoa. Innovative technology solutions for sustainability. 2015 [accessed 01.28.15]. [39] Fernandez AI, Martínez M, Segarra M, Martorell I, Cabeza LF. Selection of materials with potential in sensible thermal energy storage. Sol Energy Mater Sol Cells 2010;94:1723–9. doi:10.1016/j.solmat.2010.05.035. [40] Regin AF, Solanki SC, Saini JS. Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renew Sustain Energy Rev 2008;12:2438–58. doi:10.1016/j.rser.2007.06.009. [41] Kenisarin MM. High-temperature phase change materials for thermal energy storage. Renew Sustain Energy Rev 2010;14:955–70. doi:10.1016/ j.rser.2009.11.011. [42] Perry RH, Green DW, editors. Perry’s chemical engineers’ handbook. 8th ed. New York: McGraw-Hill; 2008. [43] International Renewable Energy Agency. Concentrating solar power technology brief. 2013. [44] Laing D. Solar thermal energy storage technologies. Hannover; 2008. [45] Gil A, Medrano M, Martorell I, Lázaro A, Dolado P, Zalba B, et al. State of the art on high temperature thermal energy storage for power generation. Part 1 – concepts, materials and modellization. Renew Sustain Energy Rev 2010;14:31–55. doi:10.1016/j.rser.2009.07.035. [46] Laing D, Bahl C, Bauer T, Lehmann D, Steinmann W-D. Thermal energy storage for direct steam generation. Sol Energy 2011;85:627–33. doi:10.1016/ j.solener.2010.08.015. [47] Carslaw HS, Jaeger JC. Conduction of heat in solids. Oxford University Press; 1986. [48] Smith GD. Numerical solution of partial differential equations. Finite difference methods. Oxford, UK: Oxford University Press; 1985. [49] Lopez J, Caceres G, Palomo Del Barrio E, Jomaa W. Confined melting in deformable porous media: a first attempt to explain the graphite/salt composites behaviour. Int J Heat Mass Transf 2010;53:1195–207. doi:10.1016/ j.ijheatmasstransfer.2009.10.025. [50] Pitié F, Zhao CY, Cáceres G. Thermo-mechanical analysis of ceramic encapsulated phase-change-material (PCM) particles. Energy Environ Sci 2011;4:2117. doi:10.1039/c0ee00672f. [51] Parrado C, Cáceres G, Bize F, Bubnovich V, Baeyens J, Degrève J, et al. Thermo- mechanical analysis of copper-encapsulated NaNO3–KNO3. Chem Eng Res Des 2015;93:224–31. doi:10.1016/j.cherd.2014.07.007. [52] Zakri T, Laurent J-P, Vauclin M. Theoretical evidence for Lichtenecker’s mixture formulae’ based on the effective medium theory. J Phys D Appl Phys 1998;31:1589–94. doi:10.1088/0022-3727/31/13/013. [53] Maxwell JC. A treatise on electricity and magnetism. Oxford University Press; 1954. [54] Lal K, Parshad R. Test and utilization of the Fricke and Pearce equations for dielectric correlation between powder and bulk. J Phys D Appl Phys 1974;7:455–61. doi:10.1088/0022-3727/7/3/313. [55] Geldart D, Abrahamsen AR. Fluidization of fine porous powders. Chem Eng Prog Symp Ser 1981;77:160. [56] Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two- component systems. Ind Eng Chem Fundam 1962;1:187–91. doi:10.1021/ i160003a005. [57] Tan H, Li C, Li Y. Simulation research on PCM freezing process to recover and store the cold energy of cryogenic gas. Int J Therm Sci 2011;50:2220–7. doi:10.1016/j.ijthermalsci.2011.04.017. [58] Ahern JE. Applications of the second law of thermodynamics to cryogenics – a review. Energy 1980;5:891–7. doi:10.1016/0360-5442(80)90104-8. [59] Ordonez C. Liquid nitrogen fueled, closed Brayton cycle cryogenic heat engine. Energy Convers Manag 2000;41:331–41. doi:10.1016/S0196- 8904(99)00117-X. [60] Ordonez CA, Plummer MC. Cold thermal storage and cryogenic heat engines for energy storage applications. Energy Sources 1997;19:389–96. doi:10.1080/ 00908319708908858. [61] Li Y, Chen H, Ding Y. Fundamentals and applications of cryogen as a thermal energy carrier: a critical assessment. Int J Therm Sci 2010;49:941–9. doi:10.1016/j.ijthermalsci.2009.12.012. [62] Kishimoto K, Hasegawa K, Asano T. Development of generator of liquid air storage energy system. 1998. [63] Wen DS, Chen HS, Ding YL, Dearman P. Liquid nitrogen injection into water: pressure build-up and heat transfer. Cryogenics (Guildf) 2006;46:740–8. doi:10.1016/j.cryogenics.2006.06.007. [64] Markert F, Melideo D, Baraldi D. Numerical analysis of accidental hydrogen releases from high pressure storage at low temperatures. Int J Hydrogen Energy 2014;39:7356–64. doi:10.1016/j.ijhydene.2014.02.166. [65] Byon C. Numerical study on the phase change heat transfer of LNG in glass wool based on the VOF method. Int J Heat Mass Transf 2015;88:20–7. doi:10.1016/j.ijheatmasstransfer.2015.03.092. [66] Konopka M, Behruzi P, Schmitt S, Dreyer EM. Phase change in cryogenic upper stage tanks. 50th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf., Cleveland, USA: 2014, p. 16. doi:10.2514/6.2014-3994. [67] Pacheco KA, Li Y, Wang M. Study of integration of cryogenic air energy storage and coal oxy-fuel combustion through modelling and simulation, vol. 33. Elsevier; 2014 doi:10.1016/B978-0-444-63455-9.50091-X. [68] Li Y, Wang X, Ding Y. A cryogen-based peak-shaving technology: systematic approach and techno-economic analysis. Int J Energy Res 2013;37:547–57. doi:10.1002/er.1942. [69] Donatini F, Zamparelli C, Maccari A, Vignolini M. High efficency integration of thermodynamic solar plant with natural gas combined cycle. 2007 Int Conf Clean Electr Power, IEEE 2007;770–6. doi:10.1109/ICCEP.2007.384301. [70] Fu J, Sunden B, Chen X, Huang Y. Influence of phase change on self- pressurization in cryogenic tanks under microgravity. Appl Therm Eng 2015;87:225–33. doi:10.1016/j.applthermaleng.2015.05.020. [71] Yang JH, Yang GS. The temperature field research for large LNG cryogenic storage tank wall. Appl. Mech. Mater. 2014;668–669:733–6. [72] Kotek M, Suma J, Chrz V. Holding time of horizontal cryogenic vacuum insulated tanks. Refrig Sci Technol 2014;131–9. [73] Steinmann W-D, Eck M. Buffer storage for direct steam generation. Sol Energy 2006;80:1277–82. doi:10.1016/j.solener.2005.05.013. [74] Zhang N, Lior N. A novel Brayton cycle with the integration of liquid hydrogen cryogenic exergy utilization. Int J Hydrogen Energy 2008;214–24. [75] Wang Q, Li Y, Wang J. Analysis of power cycle based on cold energy of liquefied natural gas and low-grade heat source. Appl Therm Eng 2004;24:539–48. doi:10.1016/j.applthermaleng.2003.09.010. [76] Wang Q, Li Y, Chen X. Exergy analysis of liquefied natural gas cold energy recovering cycles. Int J Energy Res 2005;29:65–78. doi:10.1002/er.1040. [77] Zhang N, Lior N. A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization. Energy 2006;31:1666–79. doi:10.1016/ j.energy.2005.05.006. H. Zhang et al./Progress in Energy and Combustion Science 53 (2016) 1–40 37

PDF Image | Thermal energy storage: Recent developments

thermal-energy-storage-recent-developments-037

PDF Search Title:

Thermal energy storage: Recent developments

Original File Name Searched:

3-Thermal-Energy-storage-recent-developments-and-practical-aspects.pdf

DIY PDF Search: Google It | Yahoo | Bing

Turbine and System Plans CAD CAM: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. More Info

Waste Heat Power Technology: Organic Rankine Cycle uses waste heat to make electricity, shaft horsepower and cooling. More Info

All Turbine and System Products: Infinity Turbine ORD systems, turbine generator sets, build plans and more to use your waste heat from 30C to 100C. More Info

CO2 Phase Change Demonstrator: CO2 goes supercritical at 30 C. This is a experimental platform which you can use to demonstrate phase change with low heat. Includes integration area for small CO2 turbine, static generator, and more. This can also be used for a GTL Gas to Liquids experimental platform. More Info

Introducing the Infinity Turbine Products Infinity Turbine develops and builds systems for making power from waste heat. It also is working on innovative strategies for storing, making, and deploying energy. More Info

Need Strategy? Use our Consulting and analyst services Infinity Turbine LLC is pleased to announce its consulting and analyst services. We have worked in the renewable energy industry as a researcher, developing sales and markets, along with may inventions and innovations. More Info

Made in USA with Global Energy Millennial Web Engine These pages were made with the Global Energy Web PDF Engine using Filemaker (Claris) software.

Sand Battery Sand and Paraffin for TES Thermo Energy Storage More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP