Thermal energy storage: Recent developments

PDF Publication Title:

Thermal energy storage: Recent developments ( thermal-energy-storage-recent-developments )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 038

38 H. Zhang et al./Progress in Energy and Combustion Science 53 (2016) 1–40 [78] Szargut J, Szczygiel I. Utilization of the cryogenic exergy of liquid natural gas (LNG) for the production of electricity. Energy 2009;34:827–37. doi:10.1016/ j.energy.2009.02.015. [79] Chen H, Chen Y, Hsieh H-T, Siegel N. Computational fluid dynamics modeling of gas-particle flow within a solid-particle solar receiver. J Sol Energy Eng 2007;129:160. doi:10.1115/1.2716418. [80] Van de Velden M, Baeyens J, Dougan B, Mc Murdo A. Investigation of operational parameters for an industrial CFB combustor of coal, biomass and sludge. China Particuol 2007;5:247–54. doi:10.1016/j.cpart.2007.05.001. [81] Department of Energy. Improving steam system performance, a sourcebook for industry (108 pages). DOE/GO-12004-1868. 2012. [82] Tassaing T, Danten Y, Besnard M. Infrared spectroscopic study of hydrogen- bonding in water at high temperature and pressure. J Mol Liq 2002;101:149– 58. doi:10.1016/S0167-7322(02)00089-2. [83] Gupta G, Ampornrat P, Ren X, Sridharan K, Allen TR, Was GS. Role of grain boundary engineering in the SCC behavior of ferritic–martensitic alloy HT-9. J Nucl Mater 2007;361:160–73. doi:10.1016/j.jnucmat.2006.12.006. [84] Hirose T, Shiba K, Enoeda M, Akiba M. Corrosion and stress corrosion cracking of ferritic/martensitic steel in super critical pressurized water. J Nucl Mater 2007;367–370:1185–9. doi:10.1016/j.jnucmat.2007.03.212. [85] Mitton DB, Zhang SH, Han EH, Hautanen KE, Latanision RM. Assessment of corrosion and failure mechanisms in supercritical water oxidation systems. Proc. 13th ICC, Melbourne, Australia: 1996, p. 25–9. [86] Godall PM. The efficient use of steam. Surrey, England: IPC Science and Technology Press Limited; 1980. [87] Cabeza LF, Castell A, Barreneche C, de Gracia A, Fernández AI. Materials used as PCM in thermal energy storage in buildings: a review. Renew Sustain Energy Rev 2011;15:1675–95. doi:10.1016/j.rser.2010.11.018. [88] Chen B, Wang X, Zeng R, Zhang Y, Wang X, Niu J, et al. An experimental study of convective heat transfer with microencapsulated phase change material suspension: laminar flow in a circular tube under constant heat flux. Exp Therm Fluid Sci 2008;32:1638–46. doi:10.1016/j.expthermflusci.2008.05.008. [89] Delgado M, Lázaro A, Mazo J, Marín JM, Zalba B. Experimental analysis of a microencapsulated PCM slurry as thermal storage system and as heat transfer fluid in laminar flow. Appl Therm Eng 2012;36:370–7. doi:10.1016/ j.applthermaleng.2011.10.050. [90] Bridges NJ, Visser AE, Fox EB. Potential of nanoparticle-enhanced ionic liquids (NEILs) as advanced heat-transfer fluids. Energy Fuels 2011;25:4862–4. doi:10.1021/ef2012084. [91] Cabeza LF, Gutierrez A, Barreneche C, Ushak S, Fernández ÁG, Inés Fernádez A, et al. Lithium in thermal energy storage: a state-of-the-art review. Renew Sustain Energy Rev 2015;42:1106–12. doi:10.1016/j.rser.2014.10.096. [92] U.S. Department of Energy. Solar energy technologies program. 2010. [93] The University of Alabama. Novel molten salts thermal energy storage for concentrating solar power generation 2010. [94] Fernández AG, Ushak S, Galleguillos H, Pérez FJ. Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants. Appl Energy 2014;119:131–40. doi:10.1016/j.apenergy.2013.12.061. [95] Maruoka N, Akiyama T. Thermal stress analysis of PCM encapsulation for heat recovery of high temperature waste heat. J Chem Eng Japan 2003;36:794–8. doi:10.1252/jcej.36.794. [96] Agyenim F, Hewitt N, Eames P, Smyth M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 2010;14:615–28. doi:10.1016/ j.rser.2009.10.015. [97] Erek A, Ylken Z, Acar MA. Experimental and numerical investigation of thermal energy storage with a finned tube. Int J Energy Res 2005;29:283–301. doi:10.1002/er.1057. [98] Castell A, Solé C, Medrano M, Roca J, Cabeza LF, García D. Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins. Appl Therm Eng 2008;28:1676–86. doi:10.1016/ j.applthermaleng.2007.11.004. [99] Zhang Y, Faghri A. Heat transfer enhancement in latent heat thermal energy storage system by using an external radial finned tube. J Enhanc Heat Transf 1996;3:119–27. doi:10.1615/JEnhHeatTransf.v3.i2.50. [100] Lamberg P. Approximate analytical model for two-phase solidification problem in a finned phase-change material storage. Appl Energy 2004;77:131–52. doi:10.1016/S0306-2619(03)00106-5. [101] Velraj R, Seeniraj RV, Hafner B, Faber C, Schwarzer K. Experimental analysis and numerical modelling of inward solidification on a finned vertical tube for a latent heat storage unit. Sol Energy 1997;60:281–90. doi:10.1016/S0038- 092X(96)00167-3. [102] Talati F, Mosaffa AH, Rosen MA. Analytical approximation for solidification processes in PCM storage with internal fins: imposed heat flux. Heat Mass Transf 2010;47:369–76. doi:10.1007/s00231-010-0729-9. [103] Mosaffa A, Talati F, Rosen MA, Basirat TH. Phase change material solidification in a finned cylindrical shell thermal energy storage: an approximate analytical approach. Therm Sci 2013;17:407–18. [104] DISTOR project: D2.5 Report on material & geometry definition of macroencapsulation 2005. [105] Van Caneghem J, Brems A, Lievens P, Block C, Billen P, Vermeulen I, et al. Fluidized bed waste incinerators: design, operational and environmental issues. Prog Energy Combust Sci 2012;38:551–82. doi:10.1016/j.pecs.2012.03.001. [106] Brems A, Cáceres G, Dewil R, Baeyens J, Pitié F. Heat transfer to the riser-wall of a circulating fluidised bed (CFB). Energy 2013;50:493–500. doi:10.1016/ j.energy.2012.10.037. [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] Van de Velden M, Baeyens J, Seville JPK, Fan X. The solids flow in the riser of a circulating fluidised bed (CFB) viewed by positron emission particle tracking (PEPT). Powder Technol 2008;183:290–6. doi:10.1016/ j.powtec.2007.07.027. Smolders K, Baeyens J. Thermal degradation of PMMA in fluidised beds. Waste Manag 2004;24:849–57. doi:10.1016/j.wasman.2004.06.002. Smolders K, Baeyens J. Overall solids movement and solids residence time distribution in a CFB-riser. Chem Eng Sci 2000;55:4101–16. doi:10.1016/ S0009-2509(00)00084-1. Wu SY, Baeyens J. Effect of operating temperature on minimum fluidization velocity. Powder Technol 1991;67:217–20. doi:10.1016/0032- 5910(91)80158-F. Izquierdo-Barrientos MA, Sobrino C, Almendros-Ibáñez JA. Energy storage with PCM in fluidized beds: modeling and experiments. Chem Eng J 2015;264:497– 505. doi:10.1016/j.cej.2014.11.107. Peng H, Dong H, Ling X. Thermal investigation of PCM-based high temperature thermal energy storage in packed bed. Energy Convers Manag 2014;81:420–7. doi:10.1016/j.enconman.2014.02.052. Zhang HZ, Wang XD. Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation. Sol Energy Mater Sol Cells 2009;93:1366–76. doi:10.1016/j.solmat.2009.02.021. Salunkhe PB, Shembekar PS. A review on effect of phase change material encapsulation on the thermal performance of a system. Renew Sustain Energy Rev 2012;16:5603–16. doi:10.1016/j.rser.2012.05.037. Hawlader MNA, Uddin MS, Khin MM. Microencapsulated PCM thermal-energy storage system. Appl Energy 2003;74:195–202. doi:10.1016/S0306- 2619(02)00146-0. Hawlader MNA, Uddin MS, Zhu HJ. Preparation and evaluation of a novel solar storage material: microencapsulated paraffin. Int J Sol Energy 2000;20:227–38. doi:10.1080/01425910008914357. Zhao CY, Zhang GH. Review on microencapsulated phase change materials (MEPCMs): fabrication, characterization and applications. Renew Sustain Energy Rev 2011;15:3813–32. doi:10.1016/j.rser.2011.07.019. Jamekhorshid A, Sadrameli SM, Farid M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew Sustain Energy Rev 2014;31:531–42. doi:10.1016/ j.rser.2013.12.033. Li M. A nano-graphite/paraffin phase change material with high thermal conductivity. Appl Energy 2013;106:25–30. doi:10.1016/ j.apenergy.2013.01.031. Mesalhy O, Lafdi K, Elgafy A, Bowman K. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix. Energy Convers Manag 2005;46:847–67. doi:10.1016/j.enconman.2004.06.010. Elgafy A, Lafdi K. Effect of carbon nanofiber additives on thermal behavior of phase change materials. Carbon N Y 2005;43:3067–74. doi:10.1016/ j.carbon.2005.06.042. Goodfellow. Metal – thermal catalogue 2015. Zhao CY, Lu W, Tian Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Sol Energy 2010;84:1402–12. doi:10.1016/j.solener.2010.04.022. Vadwala P. Thermal energy storage in metal foams filled with paraffin wax 2011. Li Z, Wu Z-G. Numerical study on the thermal behavior of phase change materials (PCMs) embedded in porous metal matrix. Sol Energy 2014;99:172– 84. doi:10.1016/j.solener.2013.11.017. Bauer CA, Wirtz RA. Thermal characteristics of a compact, passive thermal energy storage device. Proc. 2000 ASME IMECE, Orlando, Florida, USA: 2000, p. 1–7. Tong X, Khan JA, RuhulAmin M. Enhancement of heat transfer by inserting a metal matrix into a phase change material. Numer Heat Transf Part A Appl 1996;30:125–41. doi:10.1080/10407789608913832. Xiao X, Zhang P, Li M. Preparation and thermal characterization of paraffin/ metal foam composite phase change material. Appl Energy 2013;112:1357–66. doi:10.1016/j.apenergy.2013.04.050. Fiedler T, Öchsner A, Belova IV, Murch GE. Thermal conductivity enhancement of compact heat sinks using cellular metals. Defect Diffus. Forum 2008;273- 276:222–6. Mehling H, Hiebler S, Ziegler F. Latent heat storage using a PCM-graphite composite material. Proc. Terrastock 2000-8th int. conf. therm. energy storage, Stuttgart, Germany: 2000, p. 375–80. Py X, Olives R, Mauran S. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. Int J Heat Mass Transf 2001;44:2727–37. doi:10.1016/S0017-9310(00)00309-4. Cabeza LF, Mehling H, Hiebler S, Ziegler F. Heat transfer enhancement in water when used as PCM in thermal energy storage. Appl Therm Eng 2002;22:1141– 51. doi:10.1016/S1359-4311(02)00035-2. Zhao YJ, Wang RZ, Wang LW, Yu N. Development of highly conductive KNO3/NaNO3 composite for TES (thermal energy storage). Energy 2014;70:272–7. doi:10.1016/j.energy.2014.03.127. Kibria MA, Anisur MR, Mahfuz MH, Saidur R, Metselaar IHSC. A review on thermophysical properties of nanoparticle dispersed phase change materials. Energy Convers Manag 2015;95:69–89. doi:10.1016/j.enconman.2015.02.028. Warzoha RJ, Weigand RM, Fleischer AS. Temperature-dependent thermal properties of a paraffin phase change material embedded with herringbone

PDF Image | Thermal energy storage: Recent developments

PDF Search Title:

Thermal energy storage: Recent developments

Original File Name Searched:

3-Thermal-Energy-storage-recent-developments-and-practical-aspects.pdf

DIY PDF Search: Google It | Yahoo | Bing

Turbine and System Plans CAD CAM: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. More Info

Waste Heat Power Technology: Organic Rankine Cycle uses waste heat to make electricity, shaft horsepower and cooling. More Info

All Turbine and System Products: Infinity Turbine ORD systems, turbine generator sets, build plans and more to use your waste heat from 30C to 100C. More Info

CO2 Phase Change Demonstrator: CO2 goes supercritical at 30 C. This is a experimental platform which you can use to demonstrate phase change with low heat. Includes integration area for small CO2 turbine, static generator, and more. This can also be used for a GTL Gas to Liquids experimental platform. More Info

Introducing the Infinity Turbine Products Infinity Turbine develops and builds systems for making power from waste heat. It also is working on innovative strategies for storing, making, and deploying energy. More Info

Need Strategy? Use our Consulting and analyst services Infinity Turbine LLC is pleased to announce its consulting and analyst services. We have worked in the renewable energy industry as a researcher, developing sales and markets, along with may inventions and innovations. More Info

Made in USA with Global Energy Millennial Web Engine These pages were made with the Global Energy Web PDF Engine using Filemaker (Claris) software.

Sand Battery Sand and Paraffin for TES Thermo Energy Storage More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)