logo

Thermal energy storage: Recent developments

PDF Publication Title:

Thermal energy storage: Recent developments ( thermal-energy-storage-recent-developments )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 039

[136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] style graphite nanofibers. Appl Energy 2015;137:716–25. doi:10.1016/ j.apenergy.2014.03.091. Şahan N, Fois M, Paksoy H. Improving thermal conductivity phase change materials – a study of paraffin nanomagnetite composites. Sol Energy Mater Sol Cells 2015;137:61–7. doi:10.1016/j.solmat.2015.01.027. Yu J, Chen X, Ma XL, Song QF, Zhao YK, Cao JH. Influence of nanoparticles and graphite foam on the supercooling of acetamide. J Nanomater 2014;2014:1–10. doi:10.1155/2014/313674. Jourabian M, Farhadi M, Sedighi K. On the expedited melting of phase change material (PCM) through dispersion of nanoparticles in the thermal storage unit. Comput Math Appl 2014;67:1358–72. doi:10.1016/j.camwa.2014.02.004. Motahar S, Nikkam N, Alemrajabi AA, Khodabandeh R, Toprak MS, Muhammed M. A novel phase change material containing mesoporous silica nanoparticles for thermal storage: a study on thermal conductivity and viscosity. Int Commun Heat Mass Transf 2014;56:114–20. doi:10.1016/ j.icheatmasstransfer.2014.06.005. Cingarapu S, Singh D, Timofeeva EV, Moravek MR. Nanofluids with encapsulated tin nanoparticles for advanced heat transfer and thermal energy storage. Int J Energy Res 2014;38:51–9. doi:10.1002/er.3041. Sciacovelli A, Colella F, Verda V. Melting of PCM in a thermal energy storage unit: numerical investigation and effect of nanoparticle enhancement. Int J Energy Res 2013;37:1610–23. doi:10.1002/er.2974. Kashani S, Ranjbar AA, Madani MM, Mastiani M, Jalaly H. Numerical study of solidification of a nano-enhanced phase change material (NEPCM) in a thermal storage system. J Appl Mech Tech Phys 2013;54:702–12. doi:10.1134/ S0021894413050027. Khodadadi JM, Fan L, Babaei H. Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev 2013;24:418– 44. doi:10.1016/j.rser.2013.03.031. Abolghasemi M, Keshavarz A, Mehrabian MA. Thermodynamic analysis of a thermal storage unit under the influence of nano-particles added to the phase change material and/or the working fluid. Heat Mass Transf 2012;48:1961–70. doi:10.1007/s00231-012-1039-1. Guo CX, Wang YH. Numerical investigation of nanoparticle-enhanced high temperature phase change material for solar energy storage. Adv. Mater. Res. 2012;512-515:961–4. Wu S, Zhu D, Zhang X, Huang J. Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM). Energy and Fuels 2010;24:1894–8. doi:10.1021/ef9013967. Gong Z-X, Mujumdar AS. Cyclic heat transfer in a novel storage unit of multiple phase change materials. Appl Therm Eng 1996;16:807–15. doi:10.1016/1359- 4311(95)00088-7. Gong Z-X, Mujumdar AS. A new solar receiver thermal store for space-based activities using multiple composite phase-change materials. J Sol Energy Eng 1995;117:215. doi:10.1115/1.2847798. Michels H, Pitz-Paal R. Cascaded latent heat storage for parabolic trough solar power plants. Sol Energy 2007;81:829–37. doi:10.1016/j.solener.2006.09.008. Seeniraj RV, Velraj R, Lakshmi Narasimhan N. Heat transfer enhancement study of a LHTS unit containing dispersed high conductivity particles. J Sol Energy Eng 2002;124:243. doi:10.1115/1.1488669. Seeniraj RV, Lakshmi Narasimhan N. Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs. Sol Energy 2008;82:535–42. doi:10.1016/j.solener.2007.11.001. Wang J, Ouyang Y, Chen G. Experimental study on charging processes of a cylindrical heat storage capsule employing multiple-phase-change materials. Int J Energy Res 2001;25:439–47. doi:10.1002/er.695. Wang J, Chen G, Zheng F. Study on phase change temperature distributions of composite PCMs in thermal energy storage systems. Int J Energy Res 1999;23:277–85. Cui H, Yuan X, Hou X. Thermal performance analysis for a heat receiver using multiple phase change materials. Appl Therm Eng 2003;23:2353–61. doi:10.1016/S1359-4311(03)00210-2. Peiró G, Gasia J, Miró L, Cabeza LF. Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage. Renew Energy 2015;83:729–36. doi:10.1016/ j.renene.2015.05.029. Tian Y, Zhao CY. Thermal and exergetic analysis of metal foam-enhanced cascaded thermal energy storage (MF-CTES). Int J Heat Mass Transf 2013;58:86–96. doi:10.1016/j.ijheatmasstransfer.2012.11.034. Agrafiotis C, Roeb M, Sattler C. Cobalt oxide-based structured thermochemical reactors/heat exchangers for solar thermal energy storage in Concentrated Solar Power plants. Proc ASME 2014 8th int conf energy sustain collocated with ASME 2014 12th int conf fuel cell sci eng technol 2014. doi:10.1115/ES2014- 6336. ISBN 978-0-7918-4586-8. Aydin D, Casey SP, Riffat S. The latest advancements on thermochemical heat storage systems. Renew Sustain Energy Rev 2015;41:356–67. doi:10.1016/ j.rser.2014.08.054. Carrillo AJ, Serrano DP, Pizarro P, Coronado JM. Thermochemical heat storage based on the Mn2O3/Mn3O4 redox couple: influence of the initial particle size on the morphological evolution and cyclability. J Mater Chem A 2014;2:19435–43. doi:10.1039/C4TA03409K. Carrillo AJ, Moya J, Bayón A, Jana P, de la Peña O’Shea VA, Romero M, et al. Thermochemical energy storage at high temperature via redox cycles of Mn and Co oxides: pure oxides versus mixed ones. Sol Energy Mater Sol Cells 2014;123:47–57. doi:10.1016/j.solmat.2013.12.018. [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] Michel B, Mazet N, Neveu P. Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: global performance. Appl Energy 2014;129:177–86. doi:10.1016/j.apenergy.2014.04.073. Neveu P, Tescari S, Aussel D, Mazet N. Combined constructal and exergy optimization of thermochemical reactors for high temperature heat storage. Energy Convers Manag 2013;71:186–98. doi:10.1016/ j.enconman.2013.03.035. Yan T, Wang RZ, Li TX, Wang LW, Fred IT. A review of promising candidate reactions for chemical heat storage. Renew Sustain Energy Rev 2015;43:13–31. doi:10.1016/j.rser.2014.11.015. Meng Q-L, Lee C, Kaneko H, Tamaura Y. Solar thermochemical process for hydrogen production via two-step water splitting cycle based on Ce1−xPrxO2−δ redox reaction. Thermochim Acta 2012;532:134–8. doi:10.1016/ j.tca.2011.01.028. Le Gal A, Abanades S. Catalytic investigation of ceria-zirconia solid solutions for solar hydrogen production. Int J Hydrogen Energy 2011;36:4739–48. doi:10.1016/j.ijhydene.2011.01.078. Fresno F, Fernández-Saavedra R, Belén Gómez-Mancebo M, Vidal A, Sánchez M, Isabel Rucandio M, et al. Solar hydrogen production by two-step thermochemical cycles: evaluation of the activity of commercial ferrites. Int J Hydrogen Energy 2009;34:2918–24. doi:10.1016/j.ijhydene.2009.02.020. Meier A, Steinfeld A. Solar thermochemical production of fuels. Adv Sci Technol 2010;74:303–12. doi:10.4028/www.scientific.net/AST.74.303. Charvin P, Stéphane A, Florent L, Gilles F. Analysis of solar chemical processes for hydrogen production from water splitting thermochemical cycles. Energy Convers Manag 2008;49:1547–56. doi:10.1016/j.enconman.2007.12.011. Solé A, Fontanet X, Barreneche C, Fernández AI, Martorell I, Cabeza LF. Requirements to consider when choosing a thermochemical material for solar energy storage. Sol Energy 2013;97:398–404. doi:10.1016/ j.solener.2013.08.038. Zhang HL, Baeyens J, Degrève J, Huys K, Kong WB, Lv YQ. Thermo-chemical heat storage for dispatching power generation on demand. Proceeding 13th int. conf. energy storage, Beijing, China: 2015, p. 62. Williams OM, Carden PO. Energy storage efficiency for the ammonia/ hydrogen-nitrogen thermochemical energy transfer. Int J Energy Res 1979;3(1):29–40. doi:10.1002/er.4440030105. Brems A, Baeyens J, Beerlandt J, Dewil R. Thermogravimetric pyrolysis of waste polyethylene-terephthalate and polystyrene: a critical assessment of kinetics modelling. Resour Conserv Recycl 2011;55:772–81. doi:10.1016/ j.resconrec.2011.03.003. Brems A, Baeyens J, Vandecasteele C, Dewil R. Polymeric cracking of waste polyethylene terephthalate to chemicals and energy. J Air Waste Manage Assoc 2011;61:721–31. doi:10.3155/1047-3289.61.7.721. Alonso E, Hutter C, Romero M, Steinfeld A, Gonzalez-Aguilar J. Kinetics of Mn2O3-Mn3O4 and Mn3O4-MnO redox reactions performed under concentrated thermal radiative flux. Energy and Fuels 2013;27:4884–90. doi:10.1021/ef400892j. Pardo P, Anxionnaz-Minvielle Z, Rougé S, Cognet P, Cabassud M. Ca(OH)2/CaO reversible reaction in a fluidized bed reactor for thermochemical heat storage. Sol Energy 2014;107:605–16. doi:10.1016/j.solener.2014.06.010. Schmidt M, Szczukowski C, Roßkopf C, Linder M, Wörner A. Experimental results of a 10 kW high temperature thermochemical storage reactor based on calcium hydroxide. Appl Therm Eng 2014;62:553–9. doi:10.1016/ j.applthermaleng.2013.09.020. Linder M, Roßkopf C, Schmidt M, Wörner A. Thermochemical energy storage in kW-scale based on CaO/Ca(OH)2. Energy Procedia 2014;49:888–97. doi:10.1016/j.egypro.2014.03.096. Tescari S, Agrafiotis C, Breuer S, de Oliveira L, Puttkamer MN, Roeb M, et al. Thermochemical solar energy storage via redox oxides: materials and reactor/ heat exchanger concepts. Energy Procedia 2014;49:1034–43. doi:10.1016/ j.egypro.2014.03.111. Porisini FC. Salt hydrates used for latent heat storage: corrosion of metals and reliability of thermal performance. Sol Energy 1988;41:193–7. doi:10.1016/ 0038-092X(88)90136-3. Singh IB, Sen U. Influence of temperature and sulphate ion on corrosion of mild steel in molten NaNo3. Br Corros J 1992;27:299–304. doi:10.1179/ bcj.1992.27.4.299. Bradshaw RW, Goods SH. Corrosion of alloys and metals by molten nitrates, SANDIA report. 2000. Baraka A, Abdel-Rohman AI, El Hosary AA. Corrosion of mild steel in molten sodium nitrate–potassium nitrate eutectic. Br Corros J 1976;11:44–6. doi:10.1179/000705976798320313. Cabeza LF, Illa J, Roca J, Badia F, Mehling H, Hiebler S, et al. Immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage in the 32 to 36°C temperature range. Mater Corros 2001;52:140–6. doi:10.1002/1521- 4176(200102)52:2<140::AID-MACO140>3.0.CO;2-R. Bradshaw RW, Goods SH. Corrosion resistance of stainless steels during thermal cycling in alkali nitrate molten salts, SANDIA Report. 2001. Barlow P. Barlow’s formula. 2015 [accessed 05.05.15]. Perry RH, Green DW. Perry’s chemical engineers handbook. [Chapter 23]. 6th ed. New York: McGraw-Hill Book Company; 1985. Specialmetals. INCONEL alloy 600 2008. ATI. Allegheny technologies incorporated. ; 2015. Global Metals Pty Ltd. Global metals 2015. . H. Zhang et al./Progress in Energy and Combustion Science 53 (2016) 1–40 39

PDF Image | Thermal energy storage: Recent developments

thermal-energy-storage-recent-developments-039

PDF Search Title:

Thermal energy storage: Recent developments

Original File Name Searched:

3-Thermal-Energy-storage-recent-developments-and-practical-aspects.pdf

DIY PDF Search: Google It | Yahoo | Bing

Turbine and System Plans CAD CAM: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. More Info

Waste Heat Power Technology: Organic Rankine Cycle uses waste heat to make electricity, shaft horsepower and cooling. More Info

All Turbine and System Products: Infinity Turbine ORD systems, turbine generator sets, build plans and more to use your waste heat from 30C to 100C. More Info

CO2 Phase Change Demonstrator: CO2 goes supercritical at 30 C. This is a experimental platform which you can use to demonstrate phase change with low heat. Includes integration area for small CO2 turbine, static generator, and more. This can also be used for a GTL Gas to Liquids experimental platform. More Info

Introducing the Infinity Turbine Products Infinity Turbine develops and builds systems for making power from waste heat. It also is working on innovative strategies for storing, making, and deploying energy. More Info

Need Strategy? Use our Consulting and analyst services Infinity Turbine LLC is pleased to announce its consulting and analyst services. We have worked in the renewable energy industry as a researcher, developing sales and markets, along with may inventions and innovations. More Info

Made in USA with Global Energy Millennial Web Engine These pages were made with the Global Energy Web PDF Engine using Filemaker (Claris) software.

Sand Battery Sand and Paraffin for TES Thermo Energy Storage More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP