logo

Thermal energy storage: Recent developments

PDF Publication Title:

Thermal energy storage: Recent developments ( thermal-energy-storage-recent-developments )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 040

40 H. Zhang et al./Progress in Energy and Combustion Science 53 (2016) 1–40 [190] [191] [192] [193] [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] American Iron and Steel Institute. High temperature characteristics of stainless steel, vol. 240. 2010 doi:10.1088/1742-6596/240/1/012071. Special metals. INCOLOY alloy 825 2004. Singh JP, Bansal NP, Goto T, Lamon J, Choi SR, Mahmoud MM, editors. Processing and properties of advanced ceramics and composites iv: ceramic transactions. Hoboken, New Jersey: John Wiley & Sons; 2012. Ananthakumar S, Manohar P, Warrier KGK. Microstructural features and mechanical properties of Al2O3–Al2TiO 5 composite processed by gel assisted ceramic extrusion. Br Ceram Trans 2002;101:38–43. doi:10.1179/ 096797801125000393. Maddrell ER. Pressureless sintering of silicon carbide. J Mater Sci Lett 1987;6:486–8. doi:10.1007/BF01756807. Guo XM, Yan YJ, Chen J, Huang ZR, Liu XJ. Mechanical properties and microstructure of extruded SiC ceramics. J Inorg Mater 2009;24:1155–8. doi:10.3724/SP.J.1077.2009.01155. RHI AG. RHI. ; 2015. Ortech Advanced Ceramics. Ceramic seal. ; 2015. GraphiteStore.com. Technical ceramics. ; 2015. McDanel Ceramics. Ceramics. ; 2015. Bradshaw RW, Siegel NP. Molten nitrate salt development for thermal energy storage in parabolic trough solar power systems. In: Es2008 Proc 2nd int conf energy sustain, vol. 2. 2009. p. 631–7. Zhang HL, Degrève J, Dewil R, Baeyens J. Operation diagram of circulating fluidized beds (CFBs). Procedia Eng 2015;102:1092–103. doi:10.1016/ j.proeng.2015.01.232. Geldart D. Types of gas fluidization. Powder Technol 1973;7:285–92. doi:10.1016/0032-5910(73)80037-3. Abrahamsen AR, Geldart D. Behaviour of gas-fluidized beds of fine powders part I. Homogeneous expansion. Powder Technol 1980;26:35–46. doi:10.1016/ 0032-5910(80)85005-4. Bi HT, Grace JR. Flow regime diagrams for gas-solid fluidization and upward transport. Int J Multiph Flow 1995;21:1229–36. doi:10.1016/0301- 9322(95)00037-X. Punwani DV, Modi MV, Tarman PB. Generalized correlation for estimating choking velocity in vertical solids transport. Conf. int. powder bulk solids handl. process. conf., Chicago, USA 1976. Brook N. Fluid transport of coarse solids. Min Sci Technol 1987;5:197–217. doi:10.1016/S0167-9031(87)90415-4. Baeyens J, Geldart D. An investigation into slugging fluidized beds. Chem Eng Sci 1974;29:255–65. doi:10.1016/0009-2509(74)85051-7. Flamant G. Theoretical and experimental study of radiant heat transfer in a solar fluidized-bed receiver. AIChE J 1982;28:529–35. doi:10.1002/ aic.690280402. Martin J, Vitko J. ASCUAS: a solar central receiver utilizing a solid thermal carrier. 1982. Bataillie D, Laguerie C, Royere C, Gauthier D. Echangeurs de chaleur gaz-solide à lits fluidisés multi-étages dans le domaine des moyennes et hautes températures. Entropie 1989;25:113–26. Flamant G, Hernandez D, Bonet C, Traverse J-P. Experimental aspects of the thermochemical conversion of solar energy; decarbonation of CaCO3. Sol Energy 1980;24:385–95. doi:10.1016/0038-092X(80)90301-1. Siegel NP, Ho CK, Khalsa SS, Kolb GJ. Development and evaluation of a prototype solid particle receiver: on-sun testing and model validation. J Sol Energy Eng 2010;132:021008. doi:10.1115/1.4001146. Tan T, Chen Y. Review of study on solid particle solar receivers. Renew Sustain Energy Rev 2010;14:265–76. doi:10.1016/j.rser.2009.05.012. Röger M, Amsbeck L, Gobereit B, Buck R. Face-down solid particle receiver using recirculation. J Sol Energy Eng 2011;133:031009. doi:10.1115/1.4004269. Warerkar S, Schmitz S, Goettsche J, Hoffschmidt B, Reißel M, Tamme R. Air-sand heat exchanger for high-temperature storage. J Sol Energy Eng 2011;133:021010. doi:10.1115/1.4003583. [216] [217] [218] [219] [220] [221] [222] [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] Al-Ansary H, El-Leathy A, Al-Suhaibani Z, Jeter S, Sadowski D, Alrished A, et al. Experimental study of a sand–air heat exchanger for use with a high- temperature solar gas turbine system. J Sol Energy Eng 2012;134:041017. doi:10.1115/1.4007585. Mahmoudi S, Chan CW, Brems A, Seville J, Baeyens J. Solids flow diagram of a CFB riser using Geldart B-type powders. Particuology 2012;10:51–61. doi:10.1016/j.partic.2011.09.002. Smolders K, Baeyens J. Elutriation of fines from gas fluidized beds: mechanisms of elutriation and effect of freeboard geometry. Powder Technol 1997;92:35– 46. doi:10.1016/S0032-5910(97)03214-2. Bodin S, Briens C, Bergougnou M, Patureaux T. Standpipe flow modeling, experimental validation and design recommendations. Powder Technol 2002;124:8–17. doi:10.1016/S0032-5910(01)00473-9. Smolders K, Geldart D, Baeyens J. The physical models of cyclone diplegs in fluidized beds. Chinese J Chem Eng 2001;9:337–47. Chan CW, Seville JPK, Fan X, Baeyens J. Solid particle motion in a standpipe as observed by Positron Emission Particle Tracking. Powder Technol 2009;194:58–66. Flamant G, Hemati M. Dispositif collecteur d’énergie solaire. French Patent No. 1058565, 2010. Falcone PK, Noring JE, Hruby JM. Assessment of a solid particle receiver for a high temperature solar central receiver system. 1985. Fend T, Pitz-Paal R, Reutter O, Bauer J, Hoffschmidt B. Two novel high-porosity materials as volumetric receivers for concentrated solar radiation. Sol Energy Mater Sol Cells 2004;84:291–304. doi:10.1016/j.solmat.2004.01.039. Gokon N, Yamamoto H, Kondo N, Kodama T. Internally circulating fluidized bed reactor using m-ZrO[sub 2] supported NiFe[sub 2]O[sub 4] particles for thermochemical two-step water splitting. J Sol Energy Eng 2010;132:021102. doi:10.1115/1.4001154. Xu C, Song Z, Chen L, Zhen Y. Numerical investigation on porous media heat transfer in a solar tower receiver. Renew Energy 2011;36:1138–44. doi:10.1016/j.renene.2010.09.017. Jeter SM, Stephens JH. System and method of thermal energy storage. US2012/ 0132398A1, 2011. Zipf V, Neuhäuser A, Willert D, Nitz P, Gschwander S, Platzer W. High temperature latent heat storage with a screw heat exchanger: design of prototype. Appl Energy 2013;109:462–9. doi:10.1016/j.apenergy.2012. 11.044. Matsubara K, Kazuma Y, Sakurai A, Suzuki S, Soon-Jae L, Kodama T, et al. High-temperature fluidized receiver for concentrated solar radiation by a beam-down reflector system. Energy Procedia 2014;49:447–56. doi:10.1016/ j.egypro.2014.03.048. Ma Z, Glatzmaier GC, Mehos M. Development of solid particle thermal energy storage for concentrating solar power plants that use fluidized bed technology. Energy Procedia 2014;49:898–907. doi:10.1016/j.egypro.2014.03.097. Zhang HL, Baeyens J, Degrève J, Brems A, Dewil R. The convection heat transfer coefficient in a circulating fluidized bed (CFB). Adv Powder Technol 2014;25:710–15. doi:10.1016/j.apt.2013.10.018. Ordóñez F, Caliot C, Bataille F, Lauriat G. Optimization of the optical particle properties for a high temperature solar particle receiver. Sol Energy 2014;99:299–311. doi:10.1016/j.solener.2013.11.014. Fernández P, Miller FJ. Performance analysis and preliminary design optimization of a small particle heat exchange receiver for solar tower power plants. Sol Energy 2015;112:458–68. doi:10.1016/j.solener.2014. 11.012. Zanganeh G, Pedretti A, Haselbacher A, Steinfeld A. Design of packed bed thermal energy storage systems for high-temperature industrial process heat. Appl Energy 2015;137:812–22. doi:10.1016/j.apenergy.2014.07.110. Chan CW, Seville JPK, Parker DJ, Baeyens J. Particle velocities and their residence time distribution in the riser of a CFB. Powder Technol 2010;203:187–97. doi:10.1016/j.powtec.2010.05.008. Zhang H, Degrève J, Baeyens J, Dewil R. The voidage in a CFB riser as function of solids flux and gas velocity. Procedia Eng 2015;102:1112–22. doi:10.1016/ j.proeng.2015.01.234.

PDF Image | Thermal energy storage: Recent developments

thermal-energy-storage-recent-developments-040

PDF Search Title:

Thermal energy storage: Recent developments

Original File Name Searched:

3-Thermal-Energy-storage-recent-developments-and-practical-aspects.pdf

DIY PDF Search: Google It | Yahoo | Bing

Turbine and System Plans CAD CAM: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. More Info

Waste Heat Power Technology: Organic Rankine Cycle uses waste heat to make electricity, shaft horsepower and cooling. More Info

All Turbine and System Products: Infinity Turbine ORD systems, turbine generator sets, build plans and more to use your waste heat from 30C to 100C. More Info

CO2 Phase Change Demonstrator: CO2 goes supercritical at 30 C. This is a experimental platform which you can use to demonstrate phase change with low heat. Includes integration area for small CO2 turbine, static generator, and more. This can also be used for a GTL Gas to Liquids experimental platform. More Info

Introducing the Infinity Turbine Products Infinity Turbine develops and builds systems for making power from waste heat. It also is working on innovative strategies for storing, making, and deploying energy. More Info

Need Strategy? Use our Consulting and analyst services Infinity Turbine LLC is pleased to announce its consulting and analyst services. We have worked in the renewable energy industry as a researcher, developing sales and markets, along with may inventions and innovations. More Info

Made in USA with Global Energy Millennial Web Engine These pages were made with the Global Energy Web PDF Engine using Filemaker (Claris) software.

Sand Battery Sand and Paraffin for TES Thermo Energy Storage More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP