2020 Carbon Capture

PDF Publication Title:

2020 Carbon Capture ( 2020-carbon-capture )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 012

We have only to look to nature, where such chemical separations are performed routinely, to imagine what may be achieved. The hemoglobin molecule transports oxygen in the blood rapidly and selectively and releases it with minimal energy penalty. Despite our improved understanding of how this biological system works, we have yet to engineer a molecular capture system that uses the fundamental cooperativity process that lies at the heart of the functionality of hemoglobin. While such biological examples provide inspiration, we also note that newly developed theoretical and computational capabilities; the synthesis of new molecules, materials, and membranes; and the remarkable advances in characterization techniques enabled by the Department of Energy’s measurement facilities all create a favorable environment for a major new basic research push to solve the carbon capture problem within the next decade. The Department of Energy has established a comprehensive strategy to meet the nation’s needs in the carbon capture arena. This framework has been developed following a series of workshops that have engaged all the critical stakeholder communities. The strategy that has emerged is based upon a tiered approach, with Fossil Energy taking the lead in a series of applied research programs that will test and extend our current systems. ARPA-E (Advanced Research Projects Agency–Energy) is supporting potential breakthroughs based upon innovative proposals to rapidly harness today’s technical capabilities in ways not previously considered. These needs and plans have been well summarized in the report from a recent workshop—Carbon Capture 2020, held in October 5 and 6, 2009—focused on near-term strategies for carbon capture improvements (http://www.netl.doe.gov/publications/ proceedings/09/CC2020/pdfs/Richards_Summary.pdf ). Yet the fact remains that when the carbon capture problem is looked at closely, we see today’s technologies fall far short of making carbon capture an economically viable process. This situation reinforces the need for a parallel, intensive use-inspired basic research effort to address the problem. This was the overwhelming conclusion of a recent workshop—Carbon Capture: Beyond 2020, held March 4 and 5, 2010—and is the subject of the present report. To prepare for the second workshop, an in-depth assessment of current technologies for carbon capture was conducted; the result of this study was a factual document, Technology and Applied R&D Needs for Carbon Capture: Beyond 2020. This document, which was prepared by experts in current carbon capture processes, also summarized the technological gaps or bottlenecks that limit currently available carbon capture technologies. The report considered the separation processes needed for all three CO2 emission reduction strategies—postcombustion, precombustion, and oxycombustion—and assessed three primary separation technologies based on liquid absorption, membranes, and solid adsorption. The workshop “Carbon Capture: Beyond 2020” convened approximately 80 attendees from universities, national laboratories, and industry to assess the basic research needed to address the current technical bottlenecks in carbon capture processes and to identify key research priority directions that will provide the foundations for future carbon capture technologies. The workshop began with a plenary session including speakers who summarized the extent of the carbon capture challenge, the various current approaches, and the limitations of these technologies. Workshop attendees were then given the charge to identify high-priority basic research directions that could provide revolutionary new concepts to form the basis for separation technologies in 2020 and beyond. The participants were divided into three major panels corresponding to different approaches for separating gases to reduce carbon x

PDF Image | 2020 Carbon Capture

PDF Search Title:

2020 Carbon Capture

Original File Name Searched:

1291240.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)