PDF Publication Title:
Text from PDF Page: 015
What is CO capture and storage and how could it contribute to mitigating climate change? Summary for Policymakers Most scenarios project that the supply of primary energy will continue to be dominated by fossil fuels until at least the middle of the century. As discussed in the TAR, most models also indicate that known technological options1 could achieve a broad range of atmospheric stabilization levels but that implementation would require socio-economic and institutional changes. In this context, the availability of CCS in the portfolio of options could facilitate achieving stabilization goals (Sections 1.1, 1.3). What are the characteristics of CCS? 1. Carbon dioxide (CO2) capture and storage (CCS) is a process consisting of the separation of CO2 from industrial and energy-related sources, transport to a storage location and long-term isolation from the atmosphere. This report considers CCS as an option in the portfolio of mitigation actions for stabilization of atmospheric greenhouse gas concentrations. Other mitigation options include energy efficiency improvements, the switch to less carbon-intensive fuels, nuclear power, renewable energy sources, enhancement of biological sinks, and reduction of non-CO2 greenhouse gas emissions. CCS has the potential to reduce overall mitigation costs and increase flexibility in achieving greenhouse gas emission reductions. The widespread application of CCS would depend on technical maturity, costs, overall potential, diffusion and transfer of the technology to developing countries and their capacity to apply the technology, regulatory aspects, environmental issues and public perception (Sections 1.1.1, 1.3, 1.7, 8.3.3.4). 3. Capture of CO2 can be applied to large point sources. The CO2 would then be compressed and transported for storage in geological formations, in the ocean, in mineral carbonates2, or for use in industrial processes. 2. The Third Assessment Report (TAR) indicates that no single technology option will provide all of the emission reductions needed to achieve stabilization, but a portfolio of mitigation measures will be needed. Table SPM.1. Profile by process or industrial activity of worldwide large stationary CO2 sources with emissions of more than 0.1 million tonnes of CO2 (MtCO2) per year. Large point sources of CO2 include large fossil fuel or biomass energy facilities, major CO2-emitting industries, natural gas production, synthetic fuel plants and fossil fuel-based hydrogen production plants (see Table SPM.1). Potential technical storage methods are: geological storage (in geological formations, such as oil and gas fields, unminable coal beds and deep saline formations3), ocean storage (direct release into the ocean water column or onto the deep seafloor) and industrial fixation of CO2 into inorganic carbonates. This report also discusses industrial uses of CO2, but this is not expected to contribute much to the reduction of CO2 Process Number of sources Emissions (MtCO yr-1) Fossil fuels Power 4,942 10,539 Cement production 1,175 932 Refineries 638 798 Iron and steel industry 269 646 Petrochemical industry 470 379 Oil and gas processing Not available 50 Other sources 90 33 Biomass Bioethanol and bioenergy 303 91 Total 7,887 1,466 1 “Known technological options” refer to technologies that exist in operation or in the pilot plant stage at the present time, as referenced in the mitigation scenarios discussed in the TAR. It does not include any new technologies that.will require profound technological breakthroughs. Known technological options are explained in the TAR and several mitigation scenarios include CCS 2 Storage of CO2 as mineral carbonates does not cover deep geological carbonation or ocean storage with enhanced carbonate neutralization as discussed in Chapter 6 (Section 7.2). 3 Saline formations are sedimentary rocks saturated with formation waters containing high concentrations of dissolved salts. They are widespread and contain enormous quantities of water that are unsuitable for agriculture or human consumption. Because the use of geothermal energy is likely to increase, potential geothermal areas may not be suitable for CO2 storage (see Section 5.3.3).PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE
PDF Search Title:
CARBON DIOXIDE CAPTURE AND STORAGEOriginal File Name Searched:
srccs_wholereport.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |