PDF Publication Title:
Text from PDF Page: 054
42 Technical Summary Table TS.9. 2002 Cost ranges for the components of a CCS system as applied to a given type of power plant or industrial source. The costs of the separate components cannot simply be summed to calculate the costs of the whole CCS system in US$/CO2 avoided. All numbers are representative of the costs for large-scale, new installations, with natural gas prices assumed to be 2.8-4.4 US$ GJ-1 and coal prices 1-1.5 US$ GJ-1. CCS system components Cost range Remarks Capture from a coal- or gas-fired power plant 15-75 US$/tCO2 net captured Net costs of captured CO2, compared to the same plant without capture. Capture from hydrogen and ammonia production or gas processing 5-55 US$/tCO2 net captured Applies to high-purity sources requiring simple drying and compression. Capture from other industrial sources 25-115 US$/tCO2 net captured Range reflects use of a number of different technologies and fuels. Transportation 1-8 US$/tCO2 transported Per 250 km pipeline or shipping for mass flow rates of 5 (high end) to 40 (low end) MtCO2 yr-1. Geological storagea 0.5-8 US$/tCO2 net injected Excluding potential revenues from EOR or ECBM. Geological storage: monitoring and verification 0.1-0.3 US$/tCO2 injected This covers pre-injection, injection, and post-injection monitoring, and depends on the regulatory requirements. Ocean storage 5-30 US$/tCO2 net injected Including offshore transportation of 100-500 km, excluding monitoring and verification. Mineral carbonation 50-100 US$/tCO2 net mineralized Range for the best case studied. Includes additional energy use for carbonation. a Over the long term, there may be additional costs for remediation and liabilities. indicating that the assumed credit for EOR over the life of the plant is greater than the lowest reported cost of CO2 capture for that system. This might also apply in a few instances of low-cost capture from industrial processes. In addition to fossil fuel-based energy conversion processes, CO2 could also be captured in power plants fueled with biomass, or fossil-fuel plants with biomass co-firing. At present, biomass plants are small in scale (less than 100 MWe). This means that the resulting costs of production with and without CCS are relatively high compared to fossil alternatives. Full CCS costs for biomass could amount to 110 US$/tCO2 avoided. Applying CCS to biomass-fuelled or co- fired conversion facilities would lead to lower or negative13 CO2 emissions, which could reduce the costs for this option, depending on the market value of CO2 emission reductions. Similarly, CO2 could be captured in biomass-fueled H2 plants. The cost is reported to be 22–25 US$/tCO2 (80–92 US$/tC) avoided in a plant producing 1 million Nm3 day-1 of H2, and corresponds to an increase in the H2 product costs of about 2.7 US$ GJ-1. Significantly larger biomass plants could potentially benefit from economies of scale, bringing down costs of the CCS systems to levels broadly similar to coal plants. However, to date, there has been little experience with large-scale biomass plants, so their feasibility has not been proven yet, and costs and potential are difficult to estimate. The cost of CCS has not been studied in the same depth for non-power applications. Because these sources are very diverse in terms of CO2 concentration and gas stream pressure, the available cost studies show a very broad range. The lowest costs were found for processes that already separate CO2 as part of the production process, such as hydrogen production (the cost of capture for hydrogen production was reported earlier in Table TS.4). The full CCS cost, including transport and storage, raises the cost of hydrogen production by 0.4 to 4.4 US$ GJ-1 in the case of geological storage, and by -2.0 to 2.8 US$ GJ-1 in the case of EOR, based on the same cost assumptions as for Table TS.10. Cost of CO2 avoided Table TS.10 also shows the ranges of costs for ‘CO2 avoided’. CCS energy requirements push up the amount of fuel input (and therefore CO2 emissions) per unit of net power output. As a result, the amount of CO2 produced per unit of product (a kWh of electricity) is greater for the power plant with CCS than the reference plant, as shown in Figure TS.11. To determine the CO2 reductions one can attribute to CCS, one needs to compare CO2 emissions per kWh of the plant with capture to that of a reference plant without capture. The difference is referred to as the ‘avoided emissions’. 13 If for example the biomass is harvested at an unsustainable rate (that is, faster than the annual re-growth), the net CO2 emissions of the activity might not be negative.PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE
PDF Search Title:
CARBON DIOXIDE CAPTURE AND STORAGEOriginal File Name Searched:
srccs_wholereport.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |