CARBON DIOXIDE CAPTURE AND STORAGE

PDF Publication Title:

CARBON DIOXIDE CAPTURE AND STORAGE ( carbon-dioxide-capture-and-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 074

62 IPCC Special Report on Carbon dioxide Capture and Storage local information. When looking at the use of CCS, important considerations will include the environmental and resource implications, as well as the cost. A systematic process of evaluation is needed which can examine all the stages of the CCS system in these respects and can be used for this and other mitigation options. A well-established method of analyzing environmental impacts in a systematic manner is the technique of Life Cycle Analysis (LCA). This is codified in the International Standard ISO 14040 (ISO, 1997). The first step required is the establishment of a system boundary, followed by a comparison of the system with CCS and a base case (reference system) without CCS. The difference will define the environmental impact of CCS. A similar approach will allow a systematic assessment of the resource and/or cost implications of CCS. Figure 1.4 System boundary for a plant or process emitting CO2 (such as a power plant, a hydrogen production plant or other industrial process). The resource and environmental impacts of a CCS system are measured by the changes in total system input and output quantities needed to produce a unit of product. 1.5.1 Establishing a system boundary be important. Other aspects which may be relatively unique to CCS include the ability to keep the CO2 separate from the atmosphere and the possibility of unpredictable effects (the consequences of climate change, for example) but these are not quantifiable in an LCA. A generic system boundary is shown in Figure 1.4, along with the flows of materials into and out of the system. The key flow13 is the product stream, which may be an energy product (such as electricity or heat), or another product with economic value such as hydrogen, cement, chemicals, fuels or other goods. In analyzing the environmental and resource implications of CCS, the convention used throughout this report is to normalize all of the system inputs and outputs to a unit quantity of product (e.g., electricity). As explained later, this concept is essential for establishing the effectiveness of this option: in this particular case, the total amount of CO2 produced is increased due to the additional equipment and operation of the CCS plant. In contrast, a simple parameter such as the amount of CO2 captured may be misleading. The cost of CO2 capture and storage is typically built up from three separate components: the cost of capture (including compression), transport costs and the cost of storage (including monitoring costs and, if necessary, remediation of any release). Any income from EOR (if applicable) would help to partially offset the costs, as would credits from an emissions trading system or from avoiding a carbon tax if these were to be introduced. The costs of individual components are discussed in Chapters 3 to 7; the costs of whole systems and alternative options are considered in Chapter 8. The confidence levels of cost estimates for technologies at different stages of development and commercialization are also discussed in those chapters. Inputs to the process include the fossil fuels used to meet process energy requirements, as well as other materials used by the process (such as water, air, chemicals, or biomass used as a feedstock or energy source). These may involve renewable or non-renewable resources. Outputs to the environment include the CO2 stored and emitted, plus any other gaseous, liquid or solid emissions released to the atmosphere, water or land. Changes in other emissions – not just CO2 – may also There are various ways of expressing the cost data (Freund and Davison, 2002). One convention is to express the costs in terms of US$/tCO2 avoided, which has the important feature of taking into account the additional energy (and emissions) resulting from capturing the CO2. This is very important for understanding the full effects on the particular plant of capturing CO2, especially the increased use of energy. However, as a means of comparing mitigation options, this can be confusing since the answer depends on the base case chosen for the comparison (i.e., what is being avoided). Hence, for comparisons with other ways of supplying energy or services, the cost of systems with and without capture are best presented in terms of a unit of product such as the cost of generation (e.g., US$ MWh–1) coupled with the CO2 emissions per unit of electricity generated (e.g., tCO2 MWh–1). Users can then choose the appropriate base case best suited to their purposes. This is the approach Use of this procedure would enable a robust comparison of different CCS options. In order to compare a power plant with CCS with other ways of reducing CO2 emissions from electricity production (the use of renewable energy, for example), a broader system boundary may have to be considered. 1.5.2 Application to the assessment of environmental and resource impacts The three main components of the CO2 capture, transport and storage system are illustrated in Figure 1.5 as sub-systems within the overall system boundary for a power plant with CCS. As a result of the additional requirements for operating the CCS equipment, the quantity of fuel and other material inputs needed to produce a unit of product (e.g., one MWh of electricity) is higher than in the base case without CCS and there will also be increases in some emissions and reductions in others. Specific details of the CCS sub-systems illustrated in Figure 1.5 are presented in Chapters 3–7, along with the quantification of CCS energy requirements, resource requirements and emissions. 1.5.3 Application to cost assessment 13 Referred to as the ‘elementary flow’ in life cycle analysis.

PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE

PDF Search Title:

CARBON DIOXIDE CAPTURE AND STORAGE

Original File Name Searched:

srccs_wholereport.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)