PDF Publication Title:
Text from PDF Page: 082
70 IPCC Special Report on Carbon dioxide Capture and Storage secure that emissions will be reduced and also that there will be no significant threat to human health or to ecosystems (Hawkins, 2003). Carbon dioxide transport and storage will have to be monitored to ensure there is little or no release to the atmosphere but monitoring issues are still being debated. For example, can the anticipated low rates of CO2 release from geological storage be detected by currently available monitoring techniques? Who will do this monitoring (IEA GHG, 2004b)? How long should monitoring continue after injection: for periods of decades or centuries (IEA GHG, 2004c)? 1.7 Implications for technology transfer and sustainable development 1.7.1 Equity and sustainable development 2005). Most policies designed to achieve the mitigation of climate change also have other important rationales. They can be related to the objectives of development, sustainability and equity. ‘Conventional’ climate policy analyses have tended to be driven (directly or indirectly) by the question: what is the cost-effective means of mitigating climate change for the global economy? Typically, these analyses start from a baseline projection of greenhouse gas emissions and reflect a specific set of socio-economic projections. Equity considerations are added to the process, to broaden the discussion from global welfare as a single subject to include the effects of climate change and mitigation policies on existing inequalities, amongst and within nations. The goal here goes beyond providing for basic survival, extending to a standard of living that provides security and dignity for all. The climate change issue involves complex interactions between climatic, environmental, economic, political, institutional, social, scientific, and technological processes. It cannot be addressed in isolation from broader societal goals, such as equity or sustainable development (IPCC, 2001a), or other existing or probable future sources of environmental, economic or social stress. In keeping with this complexity, a multiplicity of approaches has emerged to analyze climate change and related challenges. Many of these incorporate concerns about development, equity, and sustainability, albeit partially and gradually (IPCC, 2001a). Ancillary effects of mitigation policies may include reductions in local and regional air pollution, as well as indirect effects on transportation, agriculture, land use practices, biodiversity preservation, employment, fuel security, etc. (Krupnick et al., 2000). The concept of ‘co-benefits’ can be used to capture dimensions of the response to mitigation policies from the equity and sustainability perspectives in a way that could modify the projections produced by those working from the cost-effectiveness perspective. As yet, little analysis has been reported of the option of CCS in these respects. Sustainable development is too complex a subject for a simple summary; the study of this field aims to assess the benefits and trade-offs involved in the pursuit of the multiple goals of environmental conservation, social equity, economic growth, and eradication of poverty (IPCC, 2001a, Chapter 1). Most of the studies only make a first attempt to integrate a number of important sustainable development indicators and only a few have considered the implications for CCS (Turkenburg, 1997). To date, studies have focused on short-term side-effects of climate change mitigation policies (e.g., impact on local air and water quality) but they have also suggested a number of additional indicators to reflect development (e.g., job creation) and social impact (e.g., income distribution). CCS also poses issues relating to long-term liability for possible unintended releases or contamination which may have inter-generational and, in some cases, international consequences24. Further studies will be needed to develop suitable answers about CCS. In particular, long-term liability must be shown to be compatible with sustainable development. Will CO2 capture and storage favour the creation of job opportunities for particular countries? Will it favour technological and financial elitism or will it enhance equity by reducing the cost of energy? In terms of sustainable development, does the maintenance of the current market structures aid those countries that traditionally market fossil fuels, relative to those that import them? Is this something which mitigation policies should be developed to assist? There are no simple answers to these questions but policymakers may want to consider them. However, no analysis of these aspects of CCS is yet available. Furthermore, the mitigation options available will vary from country to country; in each case, policymakers have to balance such ancillary benefits with the direct benefits of the various options in order to select the most appropriate strategy. There are various viewpoints relating to climate policy: one is based on cost-effectiveness, another on environmental sustainability, and another on equity (Munasinghe and Swart, 1.7.2 Technology transfer Article 4.5 of the UNFCCC requires all Annex I countries to take ‘All practicable steps to promote, facilitate and finance, as appropriate, the transfer of, or access to, environmentally sound technologies and know-how to other parties, particularly developing countries, to enable them to implement provisions of the convention.’ This applies to CCS as much as it does to any other mitigation option. This was precisely stated in the declaration issued at COP 7 (UNFCCC, 2001). Paragraph 8, item (d) states: ‘Cooperating in the development, diffusion and transfer (...) and/or technologies relating to fossil fuels that capture and store GHGs, and encouraging their wider use, and facilitating the participation of the least developed countries and other Parties not included in Annex I in this effort’ 24 Some legislation is already in place which will influence this: for example both the London Convention (Article X) and its 1996 Protocol (Article 15) contain provisions stating that liability is in accordance with the principles of international law regarding a state’s responsibility for damage caused to the environment of other states or to any other area of the environment. Similarly, regional agreements such as the OSPAR Convention incorporate the ‘polluter pays’ principle (Article 2(b)). In achieving these objectives of the Convention, several keyPDF Image | CARBON DIOXIDE CAPTURE AND STORAGE
PDF Search Title:
CARBON DIOXIDE CAPTURE AND STORAGEOriginal File Name Searched:
srccs_wholereport.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |