CARBON DIOXIDE CAPTURE AND STORAGE

PDF Publication Title:

CARBON DIOXIDE CAPTURE AND STORAGE ( carbon-dioxide-capture-and-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 101

Chapter 2: Sources of CO2 89 currently in operation around the world and those planned to be built in the near future was conducted, together with a review of industrial boilers in selected regions. Capture factors were established on the basis of installed capacity, fuel type, unit size, and other technical parameters. Outside the energy and industry sectors, there are only very limited prospects for practical CO2 capture because sources in the residential sectors are small, dispersed, and often mobile, and contain only low concentrations. These factors result in lower capture factors. 2.4.1 Global storage opportunities subsurface depths greater than 800 m where the CO2 will be supercritical and in a dense liquid-like form in a geological reservoir, or High-level global assessments of both geological and ocean storage scenarios have estimated that there is considerable capacity for CO2 storage (the estimates range from hundreds to tens of thousands of GtCO2). The estimates in the literature of storage capacity in geological formations and in the oceans are discussed in detail in Chapters 5 and 6 respectively and are not discussed further in this chapter. 2.4.2 Consideration of spatial and temporal relationships In the assessment of CO2 capture, perhaps the most important open question is what will happen in the transport sector over the next few decades. If the above average increases in energy use for transport projected by all models in all scenarios involve traditional fossil-fuelled engine technologies, the capture and storage of transport-related CO2 will – though theoretically possible –remain technically meaningless (excess weight, on-board equipment, compression penalty, etc.). However, depending on the penetration rate of hydrogen-based transport technologies, it should be possible to retrofit CO2-emitting hydrogen production facilities with CO2 capture equipment. The transport sector provides a huge potential for indirect CO2 capture but feasibility depends on future hydrogen production technologies. • injected into deep ocean waters with the aim of dispersing it quickly or depositing it at great depths on the floor of the ocean with the aim of forming CO2 lakes. CO2 capture might also be technically feasible from biomass-fuelled power plants, biomass fermentation for alcohol production or units for the production of biomass-derived hydrogen. It is conceivable that these technologies might play a significant role by 2050 and produce negative emissions across the full technology chain. As discussed in Chapter 5, the aim of geological storage is to replicate the natural occurrence of deep subsurface fluids, where they have been trapped for tens or hundreds of millions of years. Due to the slow migration rates of subsurface fluids observed in nature (often centimetres per year), and even including scenarios where CO2 leakage to the surface might unexpectedly occur, CO2 injected into the geological subsurface will essentially remain geographically close to the location where it is injected. Chapter 6 shows that CO2 injected into the ocean water column does not remain in a static location, but will migrate at relatively rapid speed throughout the ocean as dissolved CO2 within the prevailing circulation of ocean currents. So dissolved CO2 in the water column will not remain where it is injected in the immediate short term (i.e., a few years to some centuries). Deep-ocean lakes of CO2 will, in principle, be more static geographically but will dissolve into the water column over the course of a few years or centuries. The results of applying the capture factors developed by Toth and Rogner (2006) to the CO2 emissions of the SRES scenarios of Table 2.5 are presented in Table 2.6. Depending on the scenario, between 30 and 60% of global power generation emissions could be suitable for capture by 2050 and 30 to 40% of industry emissions could also be captured in that time frame. The technical potentials for CO2 capture presented here are only the first step in the full carbon dioxide capture and storage chain. The variations across scenarios reflect the uncertainties inherently associated with scenario and modelling analyses. The ranges of the technical capture potential relative to total CO2 emissions are 9–12% (or 2.6–4.9 GtCO2) by 2020 and 21– 45% (or 4.7–37.5 GtCO2) by 2050. These spatial and temporal characteristics of CO2 migration in geological and ocean storage are important criteria when attempting to make maps of source and storage locations. In both storage scenarios, the possibility of adjoining storage locations in the future and of any possible reciprocal impacts will need to be considered. 2.4 Geographical relationship between sources and storage opportunities The preceding sections in this chapter have described the geographical distributions of CO2 emission sources. This section gives an overview of the geographic distribution of potential storage sites that are in relative proximity to present-day sites with large point sources. 2.4.3 Global geographical mapping of source/storage locations To appreciate the relevance of a map showing the geographic distribution of sources and potential storage locations, it is necessary to know the volumes of CO2 emissions and the storage capacity that might be available, and to establish a picture of the types and levels of technical uncertainty associated with the Global assessments of storage opportunities for CO2 emissions involving large volumes of CO2 storage have focused on the options of geological storage or ocean storage, where CO2 is: • injected and trapped within geological formations at

PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE

PDF Search Title:

CARBON DIOXIDE CAPTURE AND STORAGE

Original File Name Searched:

srccs_wholereport.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)