logo

CARBON DIOXIDE CAPTURE AND STORAGE

PDF Publication Title:

CARBON DIOXIDE CAPTURE AND STORAGE ( carbon-dioxide-capture-and-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 110

98 IPCC Special Report on Carbon dioxide Capture and Storage currently not economically feasible to capture and store CO2 from these small, distributed sources, these emissions could be reduced if the fossil fuels used in these units were replaced with either: is manufactured from fossil fuels in large pre-combustion decarbonization plants with CO2 capture and storage. Such plants produce a high concentration source of CO2 (see Chapter 3 for details on system design). Where fossil fuel costs are low and CO2 capture and storage is feasible, hydrogen manufactured in this way is likely to be less costly than hydrogen produced from renewable or nuclear primary energy sources (Williams, 2003; NRC, 2004). It should be noted that this technology can be utilized only if production sites are within a couple of hundred kilometres of where the hydrogen will be used, since cost-effective, long-distance hydrogen transport represents a significant challenge. Producing hydrogen from fossil fuels could be a step in technological development towards a hydrogen economy based on carbon-free primary energy sources through the establishment of a hydrogen utilization infrastructure (Simbeck, 2003). Energy market applications for hydrogen include its conversion to electricity electrochemically (in fuel cells) and in combustion applications. Substituting hydrogen for fossil fuel burning eliminates CO2 emissions at the point of energy use. Much of the interest in hydrogen market development has focused on distributed stationary applications in buildings and on transport. Fuel cells are one option for use in stationary distributed energy systems at scales as small as apartment buildings and even single-family residences (Lloyd, 1999). In building applications, hydrogen could also be combusted for heating and cooking (Ogden and Williams, 1989). In the transport sector, the hydrogen fuel cell car is the focus of intense development activity, with commercialization targeted for the middle of the next decade by several major automobile manufacturers (Burns et al., 2002). The main technological obstacles to the widespread use of fuel cell vehicles are the current high costs of the vehicles themselves and the bulkiness of compressed gaseous hydrogen storage (the only fully proven hydrogen storage technology), which restricts the range between refuelling (NRC, 2004). However, the currently achievable ranges might be acceptable to many consumers, even without storage technology breakthroughs (Ogden et al., 2004). • carbon-free energy carriers (e.g. electricity or hydrogen); • energy carriers that are less carbon-intensive than conventional hydrocarbon fuels (e.g., methanol, Fischer- Tropsch liquids or dimethyl ether); • biomass energy that can either be used directly or to produce energy carriers like bioethanol. If the biomass is grown sustainably the energy produced can be considered carbon-neutral. In the first two cases, the alternative energy carriers can be produced in centralized plants that incorporate CO2 capture and storage. In the case of biomass, CO2 capture and storage can also be incorporated into the energy carrier production schemes. The aim of this section is to explore the implications that introducing such alternative energy carriers and energy sources might have for future large point sources of CO2 emissions. 2.5.1 Carbon-free energy carriers 2.5.1.1 Electricity The long-term trend has been towards the electrification of the energy economy, and this trend is expected to continue (IPCC, 2000). To the extent that expanded electricity use is a substitute for the direct use of fossil fuels (e.g., in transport, or for cooking or heating applications in households), the result can be less CO2 emissions if the electricity is from carbon-free primary energy sources (renewable or nuclear) or from distributed generators such as fuel cells powered by hydrogen produced with near- zero fuel-cycle-wide emissions or from large fossil-fuel power plants at which CO2 is captured and stored. While, in principle, all energy could be provided by electricity, most energy projections envision that the direct use of fuels will be preferred for many applications (IPCC, 2000). In transport, for example, despite intensive developmental efforts, battery-powered electric vehicles have not evolved beyond niche markets because the challenges of high cost, heavy weight, and long recharging times have not been overcome. Whilst the prospects of current hybrid electric vehicles (which combine fossil fuel and electric batteries) penetrating mass markets seem good, these vehicles do not require charging from centralized electrical grids. The successful development of ‘plug-in hybrids’ might lead to an expanded role for electricity in transport but such vehicles would still require fuel as well as grid electricity. In summary, it is expected that, although electricity’s share of total energy might continue to grow, most growth in large point sources of CO2 emissions will be the result of increased primary energy demand. Hydrogen might also be used in internal combustion engine vehicles before fuel cell vehicles become available (Owen and Gordon, 2002), although efficiencies are likely to be less than with fuel cells. In this case, the range between refuelling would also be less than for hydrogen fuel cell vehicles with the same performance (Ogden et al., 2004). For power generation applications, gas turbines originally designed for natural gas operation can be re-engineered to operate on hydrogen (Chiesa et al., 2003). 2.5.1.2 Hydrogen Currently, there are a number of obstacles on the path to a hydrogen economy. They are: the absence of cost-competitive fuel cells and other hydrogen equipment and the absence of an infrastructure for getting hydrogen to consumers. These challenges are being addressed in many hydrogen R&D programmes and policy studies being carried out around the world (Sperling and Cannon, 2004). There are also safety concerns because, compared to other fuels, hydrogen has a wide flammability and detonation range, low ignition energy, If hydrogen can be successfully established in the market as an energy carrier, a consequence could be the emergence of large new concentrated sources of CO2 if the hydrogen

PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE

carbon-dioxide-capture-and-storage-110

PDF Search Title:

CARBON DIOXIDE CAPTURE AND STORAGE

Original File Name Searched:

srccs_wholereport.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP