logo

CARBON DIOXIDE CAPTURE AND STORAGE

PDF Publication Title:

CARBON DIOXIDE CAPTURE AND STORAGE ( carbon-dioxide-capture-and-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 112

100 IPCC Special Report on Carbon dioxide Capture and Storage fuels can sometimes be less than for crude oil-derived fuels. For example, a study of dimethyl ether manufacture from coal with CO2 capture and storage found that fuel-cycle-wide greenhouse gas emissions per GJ ranged from 75 to 97% of the emission rate for diesel derived from crude oil, depending on the extent of CO2 capture (Celik et al., 2005). possible to estimate the number of bioethanol plants that will be built in the future or the likely size of their CO2 emissions. A key issue posed by biomass energy production, both with and without CO2 capture and storage, is that of size. Current biomass energy production plants are much smaller than fossil fuel power plants; typical plant capacities are about 30 MWe, with CO2 emissions of less than 0.2 MtCO2 per year. The size of these biomass energy production plants reflects the availability and dispersed nature of current biomass supplies, which are mainly crop and forestry residues. The prospects for biomass energy production with CO2 capture and storage might be improved in the future if economies of scale in energy production and/or CO2 capture and storage can be realized. If, for instance, a CO2 pipeline network is established in a country or region, then small CO2 emission sources (including those from biomass energy plants) could be added to any nearby CO2 pipelines if it is economically viable to do so. A second possibility is that existing large fossil fuel plants with CO2 capture and storage represent an opportunity for the co-processing of biomass. Co-processing biomass at coal power plants already takes place in a number of countries. However, it must be noted that if biomass is co-processed with a fossil fuel, these plants do not represent new large-scale emissions sources. A third possibility is to build larger biomass energy production plants than the plants typically in place at present. Larger biomass energy production plants have been built or are being planned in a number of countries, typically those with extensive biomass resources. For example, Sweden already has seven combined heat and power plants using biomass at pulp mills, with each plant producing around 130 MWe equivalent. The size of biomass energy production plants depends on local circumstances, in particular the availability of concentrated biomass sources; pulp mills and sugar processing plants offer concentrated sources of this kind. Larger plants could also be favoured if there were a shift from the utilization of biomass residues to dedicated energy crops. Several studies have assessed the likely size of future biomass energy production plants, but these studies conflict when it comes to the scale issue. One study, cited in Audus and Freund (2004), surveyed 28 favoured sites using woody biomass crops in Spain and concluded that the average appropriate scale would be in the range 30 to 70 MWe. This figure is based on the fact that transport distances longer than the assumed maximum of 40 km would render larger plants uneconomic. In contrast, another study based on dedicated energy crops in Brazil and the United States estimated that economies of scale outweigh the extra costs of transporting biomass over long distances. This study found that plant capacities of hundreds of MWe were feasible (Marrison and Larson, 1995). Other studies have come up with similar findings (Dornburg and Faaij, 2001; Hamelinck and Faaij, 2002). A recent study analyzed a variety of options including both electricity and synthetic fuel production and indicated that large plants processing about 1000 MWth of biomass would tend to be preferred for dedicated energy crops The CO2 source implications of making synthetic low- carbon liquid energy carriers with CO2 capture and storage are similar to those for making hydrogen from fossil fuels: large quantities of concentrated CO2 would be available for capture at point sources. Again, no estimates have yet been made of the number of large stationary sources that could be generated or of their geographical distribution. 2.5.3 CO2 source implications of biomass energy production There is considerable interest in some regions of the world in the use of biomass to produce energy, either in dedicated plants or in combination with fossil fuels. One set of options with potentially significant but currently uncertain implications for future CO2 sources is bioenergy with CO2 capture and storage. Such systems could potentially achieve negative CO2 emissions. The perceived CO2 emission benefits and costs of such systems are discussed elsewhere in this report (see Chapters 3 and 8) and are not discussed further here. The aim of this section is to assess the current scale of emissions from biomass energy production, to consider how they might vary in the future, and therefore to consider their impact on the future number, and scale, of CO2 emission sources. Bioethanol is the main biofuel being produced today. Currently, the two largest producers of bioethanol are the USA and Brazil. The USA produced 11 billion litres in 2003, nearly double the capacity in 1995. Production is expected to continue to rise because of government incentives. Brazilian production was over 14 billion litres per year in 2003/2004, similar to the level in 1997/1998 (Möllersten et al., 2003). Bioethanol is used directly in internal combustion engines, without modification, as a partial replacement for petroleum-based fuels (the level of replacement in Europe and the USA is 5 to 10%). 2.5.3.1 Bioethanol production Bioethanol plants are a high-concentration source of CO2 at atmospheric pressure that can be captured and subsequently stored. As can be seen in Table 2.3, the numbers of these plants are significant in the context of high-purity sources, although their global distribution is restricted. These sources are comparable in size to those from ethylene oxide plants but smaller than those from ammonia plants. Although the trend in manufacture is towards larger production facilities, the scale of future production will be determined by issues such as improvements in biomass production and conversion technologies, competition with other land use, water demand, markets for by-product streams and competition with other transport fuels. On the basis of the literature currently available, it is not 2.5.3.2 Biomass as a primary energy source

PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE

carbon-dioxide-capture-and-storage-112

PDF Search Title:

CARBON DIOXIDE CAPTURE AND STORAGE

Original File Name Searched:

srccs_wholereport.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP