CARBON DIOXIDE CAPTURE AND STORAGE

PDF Publication Title:

CARBON DIOXIDE CAPTURE AND STORAGE ( carbon-dioxide-capture-and-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 113

Chapter 2: Sources of CO2 depends to a large degree on local circumstances and the extent to which economic forces and/or public policies will encourage the development of dedicated energy crops. The projections of annual global biomass energy use rise from 12–60 EJ by 2020, to 70–190 EJ per year by 2050, and to 120–380 EJ by 2100 in the SRES Marker Scenarios (IPCC, 2000), showing that many global energy modellers expect that dedicated energy crops may well become more and more important during the course of this century. So if bioenergy systems prove to be viable at scales suitable for CO2 capture and storage, then the negative emissions potential of biomass (see Chapter 8) might, during the course of this century, become globally important. However, it is currently unclear to what extent it will be feasible to exploit this potential, both because of the uncertainties about the scale of bioenergy conversion and the extent to which dedicated biomass energy crops will play a role in the energy economy of the future. 2.6 Gaps in knowledge 101 in the United States (Greene et al., 2004). The size of future emission sources from bioenergy options be exploited, cost-effective end-use technologies for hydrogen (e.g., low-temperature fuel cells) must be readily available on the market. In addition, it is expected that it will take decades to build a hydrogen infrastructure that will bring the hydrogen from large centralized sources (where CCS is practical) to consumers. In summary, based on the available literature, it is not possible at this stage to make reliable quantitative statements on number of biomass energy production plants that will be built in the future or the likely size of their CO2 emissions. During the course of this century, biomass energy systems might become significant new large CO2 sources, but this depends on the extent to which bioenergy conversion will take place in large plants, and the global significance of this option may well depend critically on the extent to which dedicated energy crops are pursued. Whilst it is possible to determine emission source data for the year 2000 (CO2 concentration and point source geographical location) with a reasonable degree of accuracy for most industrial sectors, it is more difficult to predict the future location of emission point sources. Whilst all projections indicate there will be an increase in CO2 emissions, determining the actual locations for new plants currently remains a subjective business. References Audus, H. and P. Freund, 2004: Climate change mitigation by biomass gasification combined with CO2 capture and storage. Proceedings of 7th International Conference on Greenhouse Gas Control Technologies. E.S. Rubin, D.W. Keith, and C.F. Gilboy (eds.), Vol. 1 pp. 187-200: Peer-Reviewed Papers and Plenary Presentations, Pergamon, 2005 Bechtel Corporation, Global Energy Inc., and Nexant Inc., 2003: Gasification Plant Cost and Performance Optimization, Task 2 Topical Report: Coke/Coal Gasification with Liquids Co- production, prepared for the National Energy Technology Laboratory, US Department of Energy under Contract No. DE- AC26-99FT40342, September. Bradshaw, J. and T. Dance, 2004: Mapping geological storage prospectivity of CO2 for the world’s sedimentary basins and regional source to sink matching. Proceedings of the 7th International Conference on Greenhouse Gas Technologies, Vol. 1; peer reviewed Papers and Plenary Presentations. pp. 583-592. Eds. E.S. Rubin, D.W. Keith and C.F. Gilboy, Pergamon, 2005 Bradshaw, J., B.E. Bradshaw, G. Allinson, A.J. Rigg, V. Nguyen, and L. Spencer, 2002: The Potential for Geological Sequestration of CO2 in Australia: Preliminary findings and implications to new gas field development. APPEA Journal, 42(1), 25-46. Burns, L., J. McCormick, and C. Borroni-Bird, 2002: Vehicle of change. Scientific American, 287(4), 64-73. Campbell, P.E., J.T. McMullan, and B.C. Williams, 2000: Concept for a competitive coal fired integrated gasification combined cycle power plant. Fuel, 79(9), 1031-1040. A detailed description of the storage capacity for the world’s sedimentary basins is required. Although capacity estimates have been made, they do not yet constitute a full resource assessment. Such information is essential to establish a better picture of the existing opportunities for storing the CO2 generated at large point sources. At present, only a simplistic assessment is possible based on the limited data about the storage capacity currently available in sedimentary basins. An analysis of the storage potential in the ocean for emissions from large point sources was not possible because detailed mapping indicating the relationship between storage locations in the oceans and point source emissions has not yet been carefully assessed. This chapter highlights the fact that fossil fuel-based hydrogen production from large centralized plants will potentially result in the generation of more high-concentration emission sources. However, it is not currently possible to predict with any accuracy the number of these point sources in the future, or when they will be established, because of market development uncertainties surrounding hydrogen as an energy carrier. For example, before high-concentration CO2 sources associated with hydrogen production for energy can Synthetic liquid fuels production or the co-production of liquid fuels and electricity via the gasification of coal or other solid feedstocks or petroleum residuals can also lead to the generation of concentrated streams of CO2. It is unclear at the present time to what extent such synthetic fuels will be produced as alternatives to crude-oil-derived hydrocarbon fuels. The co- production options, which seem especially promising, require market reforms that make it possible to co-produce electricity at a competitive market price.

PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE

PDF Search Title:

CARBON DIOXIDE CAPTURE AND STORAGE

Original File Name Searched:

srccs_wholereport.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)