PDF Publication Title:
Text from PDF Page: 193
Chapter 4: Transport of CO2 ExECuTivE SummARy 181 Transport is that stage of carbon capture and storage that links sources and storage sites. The beginning and end of ‘transport’ may be defined administratively. ‘Transport’ is covered by the regulatory framework concerned for public safety that governs pipelines and shipping. In the context of long-distance movement of large quantities of carbon dioxide, pipeline transport is part of current practice. Pipelines routinely carry large volumes of natural gas, oil, condensate and water over distances of thousands of kilometres, both on land and in the sea. Pipelines are laid in deserts, mountain ranges, heavily- populated areas, farmland and the open range, in the Arctic and sub-Arctic, and in seas and oceans up to 2200 m deep. (liquefied petroleum gas) and LNG (liquefied natural gas). This existing technology and experience can be transferred to liquid CO2 transport. Solidification needs much more energy compared with other options, and is inferior from a cost and energy viewpoint. Each of the commercially viable technologies is currently used to transport carbon dioxide. Carbon dioxide pipelines are not new: they now extend over more than 2500 km in the western USA, where they carry 50 MtCO2 yr-1 from natural sources to enhanced oil recovery projects in the west Texas and elsewhere. The carbon dioxide stream ought preferably to be dry and free of hydrogen sulphide, because corrosion is then minimal, and it would be desirable to establish a minimum specification for ‘pipeline quality’ carbon dioxide. However, it would be possible to design a corrosion- resistant pipeline that would operate safely with a gas that contained water, hydrogen sulphide and other contaminants. Pipeline transport of carbon dioxide through populated areas requires attention be paid to design factors, to overpressure protection, and to leak detection. There is no indication that the problems for carbon dioxide pipelines are any more challenging than those set by hydrocarbon pipelines in similar areas, or that they cannot be resolved. A transportation infrastructure that carries carbon dioxide in large enough quantities to make a significant contribution to climate change mitigation will require a large network of pipelines. As growth continues it may become more difficult to secure rights-of-way for the pipelines, particularly in highly populated zones that produce large amounts of carbon dioxide. Existing experience has been in zones with low population densities, and safety issues will become more complex in populated areas. Liquefied natural gas and petroleum gases such as propane and butane are routinely transported by marine tankers; this trade already takes place on a very large scale. Carbon dioxide is transported in the same way, but on a small scale because of limited demand. The properties of liquefied carbon dioxide are not greatly different from those of liquefied petroleum gases, and the technology can be scaled up to large carbon dioxide carriers. A design study discussed later has estimated costs for marine transport of 1 MtCO2 yr-1 by one 22,000 m3 marine tanker over a distance of 1100 km, along with the associated liquefaction, loading and unloading systems. The most economical carbon dioxide capture systems appear to favour CO2 capture, first, from pure stream sources such as hydrogen reformers and chemical plants, and then from centralized power and synfuel plants: Chapter 2 discusses this issue in detail. The producers of natural gas speak of ‘stranded’ reserves from which transport to market is uneconomical. A movement towards a decentralized power supply grid may make CO2 capture and transport much more costly, and it is easy to envision stranded CO2 at sites where capture is uneconomic. Liquefied gas can also be carried by rail and road tankers, but it is unlikely that they be considered attractive options for large-scale carbon dioxide capture and storage projects. CO2 pipeline operators have established minimum specifications for composition. Box 4.1 gives an example from the Canyon Reef project (Section 4.2.2.1). This specification is for gas for an enhanced oil recovery (EOR) project, and parts of it would not necessarily apply to a CO2 storage project. A low nitrogen content is important for EOR, but would not be so significant for CCS. A CO2 pipeline through populated areas might have a lower specified maximum H2S content. 4.1 introduction CO2 is transported in three states: gas, liquid and solid. Commercial-scale transport uses tanks, pipelines and ships for gaseous and liquid carbon dioxide. Dry carbon dioxide does not corrode the carbon-manganese steels generally used for pipelines, as long as the relative humidity is less than 60% (see, for example, Rogers and Mayhew, 1980); this conclusion continues to apply in the presence of N2, NOx and SOx contaminants. Seiersten (2001) wrote: Gas transported at close to atmospheric pressure occupies such a large volume that very large facilities are needed. Gas occupies less volume if it is compressed, and compressed gas is transported by pipeline. Volume can be further reduced by liquefaction, solidification or hydration. Liquefaction is an established technology for gas transport by ship as LPG “The corrosion rate of carbon steel in dry supercritical CO2 is low. For AISI 1080 values around 0.01 mm yr-1 have been measured at 90–120 bar and 160°C–180°C for 200 days. Short- Research and development on a natural gas hydrate carrying system intended to replace LNG systems is in progress, and the results might be applied to CO2 ship transport in the future. In pipeline transportation, the volume is reduced by transporting at a high pressure: this is routinely done in gas pipelines, where operating pressures are between 10 and 80 MPa. A regulatory framework will need to emerge for the low- greenhouse-gas-emissions power industry of the future to guide investment decisions. Future power plant owners may find the carbon dioxide transport component one of the leading issues in their decision-making. 4.2 Pipeline systems 4.2.1 Pipeline transportation systemsPDF Image | CARBON DIOXIDE CAPTURE AND STORAGE
PDF Search Title:
CARBON DIOXIDE CAPTURE AND STORAGEOriginal File Name Searched:
srccs_wholereport.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |