CARBON DIOXIDE CAPTURE AND STORAGE

PDF Publication Title:

CARBON DIOXIDE CAPTURE AND STORAGE ( carbon-dioxide-capture-and-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 202

190 IPCC Special Report on Carbon dioxide Capture and Storage as part of their function. A full review of relevant standards categorized by issues is presented in IEA GHG, 2003b. pressures and lower temperatures than onshore pipelines, and are often, but not always, 40 to 70% more expensive. Public concern could highlight the issue of leakage of CO2 from transportation systems, either by rupture or minor leaks, as discussed in Section 4.4. It is possible that standards may be changed in future to address specific public concerns. Odorants are often added to domestic low-pressure gas distribution systems, but not to gas in long-distance pipelines; they could, in principle, be added to CO2 in pipelines. Mercaptans, naturally present in the Weyburn pipeline system, are the most effective odorants but are not generally suitable for this application because they are degraded by O2 , even at very low concentrations (Katz, 1959). Disulphides, thioethers and ring compounds containing sulphur are alternatives. The value and impact of odorization could be established by a quantitative risk assessment. 4.6 Costs 4.6.1 Costs of pipeline transport It is cheaper to collect CO2 from several sources into a single pipeline than to transport smaller amounts separately. Early and smaller projects will face relatively high transport costs, and therefore be sensitive to transport distance, whereas an evolution towards higher capacities (large and wide-spread application) may result in a decrease in transport costs. Implementation of a ‘backbone’ transport structure may facilitate access to large remote storage reservoirs, but infrastructure of this kind will require large initial upfront investment decisions. Further study is required to determine the possible advantages of such pipeline system. 4.6.2 Costs of marine transportation systems The costs of pipelines can be categorized into three items • Construction costs Costs of a marine transport system comprise many cost elements. Besides investments for ships, investments are required for loading and unloading facilities, intermediate storage and liquefaction units. Further costs are for operation (e.g. labour, ship fuel costs, electricity costs, harbour fees), and maintenance. An optimal use of installations and ships in the transport cycle is crucial. Extra facilities (e.g. an expanded storage requirement) have to be created to be able to anticipate on possible disruptions in the transport system. - Material/equipment costs (pipe, pipe coating, cathodic protection, telecommunication equipment; possible booster stations) - Installation costs (labour) • Operation and maintenance costs - Monitoring costs - Maintenance costs - (Possible) energy costs • Other costs (design, project management, regulatory filing fees, insurances costs, right-of-way costs, contingencies allowances) The cost of marine transport systems is not known in detail at present, since no system has been implemented on a scale required for CCS projects (i.e. in the range of several million tonnes of carbon dioxide handling per year). Designs have been submitted for tender, so a reasonable amount of knowledge is available. Nevertheless, cost estimates vary widely, because CO2 shipping chains of this size have never been built and economies of scale may be anticipated to have a major impact on the costs. The pipeline material costs depend on the length of the pipeline, the diameter, the amount of CO2 to be transported and the quality of the carbon dioxide. Corrosion issues are examined in Section 4.2.2 For costs it is assumed that CO2 is delivered from the capture system at 10 MPa. Figure 4.3 shows capital investment costs for pipelines. Investments are higher when compressor station(s) are required to compensate for pressure loss along the pipeline, or for longer pipelines or for hilly terrain. Compressor stations may be avoided by increasing the pipeline diameter and reducing the flow velocity. Reported transport velocity varies from 1 to 5 m s-1. The actual design will be optimized with regard to pipeline diameter, pressure loss (required compressor stations and power) and pipeline wall thickness. A ship designed for carrying CO2 from harbour to harbour may cost about 30-50% more than a similar size semi- refrigerated LPG ship (Statoil, 2004). However, since the density of liquid CO2 is about 1100 kg m-3, CO2 ships will carry more mass than an equivalent LNG or LPG ship, where the cargo density is about 500 kg m-3. The estimated cost of ships of 20 to 30 kt capacity is between 50 and 70 M$ (Statoil, 2004). Another source (IEA GHG, 2004) estimates ship construction costs at US$ 34 million for 10 kt-sized ship, US$ 60 million with a capacity of 30 kt, or US$ 85 million with a capacity of 50 kt. A time charter rate of about 25,000 US$ day-1 covering capital charges, manning and maintenance is not unreasonable for a ship in the 20 kt carrying capacity range. Costs depend on the terrain. Onshore pipeline costs may increase by 50 to 100% or more when the pipeline route is congested and heavily populated. Costs also increase in mountains, in nature reserve areas, in areas with obstacles such as rivers and freeways, and in heavily urbanized areas because of accessibility to construction and additional required safety measures. Offshore pipelines generally operate at higher The cost for a liquefaction facility is estimated by Statoil (2004) at US$ 35 to US$ 50 million for a capacity of 1 Mt per year. The present largest liquefaction unit is 0.35 Mt yr-1. Figure 4.4 presents onshore and offshore transport costs versus pipeline diameter; where costs are based on investment cost information from various sources. Figure 4.5 gives a cost window for specific transport as function of the flow. Steel is a cost component for both pipelines and ships, and steel prices doubled in the two years up to 2005: this may be temporary.

PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE

PDF Search Title:

CARBON DIOXIDE CAPTURE AND STORAGE

Original File Name Searched:

srccs_wholereport.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)