logo

CARBON DIOXIDE CAPTURE AND STORAGE

PDF Publication Title:

CARBON DIOXIDE CAPTURE AND STORAGE ( carbon-dioxide-capture-and-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 227

Chapter 5: Underground geological storage 215 careful characterization to be good candidates for CO2 storage, unless the faults and fractures are sealed and CO2 injection will not open them (Holloway, 1997; Zarlenga et al., 2004). contain a reactive and potentially buoyant fluid such as CO2. Therefore, the condition of wells penetrating the caprock must be assessed (Winter and Bergman, 1993). In many cases, even locating the wells may be difficult and caprock integrity may need to be confirmed by pressure and tracer monitoring. The pressure and flow regimes of formation waters in a sedimentary basin are important factors in selecting sites for CO2 storage (Bachu et al., 1994). Injection of CO2 into formations overpressured by compaction and/or hydrocarbon generation may raise technological and safety issues that make them unsuitable. Underpressured formations in basins located mid- continent, near the edge of stable continental plates or behind mountains formed by plate collision may be well suited for CO2 storage. Storage of CO2 in deep saline formations with fluids having long residence times (millions of years) is conducive to hydrodynamic and mineral trapping (Section 5.2). The capacity of a reservoir will be limited by the need to avoid exceeding pressures that damage the caprock (Section 5.5.3). Reservoirs should have limited sensitivity to reductions in permeability caused by plugging of the near-injector region and by reservoir stress fluctuations (Kovscek, 2002; Bossie- Codreanu et al., 2003). Storage in reservoirs at depths less than approximately 800 m may be technically and economically feasible, but the low storage capacity of shallow reservoirs, where CO2 may be in the gas phase, could be problematic. The possible presence of fossil fuels and the exploration and production maturity of a basin are additional considerations for selection of storage sites (Bachu, 2000). Basins with little exploration for hydrocarbons may be uncertain targets for CO2 storage because of limited availability of geological information or potential for contamination of as-yet-undiscovered hydrocarbon resources. Mature sedimentary basins may be prime targets for CO2 storage because: (1) they have well-known characteristics; (2) hydrocarbon pools and/or coal beds have been discovered and produced; (3) some petroleum reservoirs might be already depleted, nearing depletion or abandoned as uneconomic; (4) the infrastructure needed for CO2 transport and injection may already be in place. The presence of wells penetrating the subsurface in mature sedimentary basins can create potential CO2 leakage pathways that may compromise the security of a storage site (Celia and Bachu, 2003). Nevertheless, at Weyburn, despite the presence of many hundreds of existing wells, after four years of CO2 injection there has been no measurable leakage (Strutt et al., 2003). 5.3.2.2 Enhanced oil recovery 5.3.2 Oil and gas fields 5.3.2.1 Abandoned oil and gas fields Depleted oil and gas reservoirs are prime candidates for CO2 storage for several reasons. First, the oil and gas that originally accumulated in traps (structural and stratigraphic) did not escape (in some cases for many millions of years), demonstrating their integrity and safety. Second, the geological structure and physical properties of most oil and gas fields have been extensively studied and characterized. Third, computer models have been developed in the oil and gas industry to predict the movement, displacement behaviour and trapping of hydrocarbons. Finally, some of the infrastructure and wells already in place may be used for handling CO2 storage operations. Depleted fields will not be adversely affected by CO2 (having already contained hydrocarbons) and if hydrocarbon fields are still in production, a CO2 storage scheme can be optimized to enhance oil (or gas) production. However, plugging of abandoned wells in many mature fields began many decades ago when wells were simply filled with a mud-laden fluid. Subsequently, cement plugs were required to be strategically placed within the wellbore, but not with any consideration that they may one day be relied upon to Many CO2 injection schemes have been suggested, including continuous CO2 injection or alternate water and CO2 gas injection (Klins and Farouq Ali, 1982; Klins, 1984). Oil displacement by CO2 injection relies on the phase behaviour of CO2 and crude oil mixtures that are strongly dependent on reservoir temperature, pressure and crude oil composition. These mechanisms range from oil swelling and viscosity reduction for injection of immiscible fluids (at low pressures) to completely miscible displacement in high-pressure applications. In these applications, more than 50% and up to 67% of the injected CO2 returns with the produced oil (Bondor, 1992) and is usually separated and re-injected into the reservoir to minimize operating costs. The remainder is trapped in the oil reservoir by various means, such as irreducible saturation and dissolution in reservoir oil that it is not produced and in pore space that is not connected to the flow path for the producing wells. Enhanced oil recovery (EOR) through CO2 flooding (by injection) offers potential economic gain from incremental oil production. Of the original oil in place, 5–40% is usually recovered by conventional primary production (Holt et al., 1995). An additional 10–20% of oil in place is produced by secondary recovery that uses water flooding (Bondor, 1992). Various miscible agents, among them CO2, have been used for enhanced (tertiary) oil recovery or EOR, with an incremental oil recovery of 7–23% (average 13.2%) of the original oil in place (Martin and Taber, 1992; Moritis, 2003). Descriptions of CO2-EOR projects are provided in Box 5.3 and Box 5.6, and an illustration is given in Figure 5.15. For enhanced CO2 storage in EOR operations, oil reservoirs may need to meet additional criteria (Klins, 1984; Taber et al., 1997; Kovscek, 2002; Shaw and Bachu, 2002). Generally, reservoir depth must be more than 600 m. Injection of immiscible fluids must often suffice for heavy- to-medium-gravity oils (oil gravity 12–25 API). The more desirable miscible flooding is applicable to light, low-viscosity oils (oil gravity 25–48 API). For miscible floods, the reservoir pressure must be higher than the minimum miscibility pressure (10–15 MPa) needed for achieving miscibility between reservoir oil and CO2, depending on oil composition and gravity, reservoir temperature and CO2 purity (Metcalfe, 1982). To achieve effective removal of the

PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE

carbon-dioxide-capture-and-storage-227

PDF Search Title:

CARBON DIOXIDE CAPTURE AND STORAGE

Original File Name Searched:

srccs_wholereport.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP