logo

CARBON DIOXIDE CAPTURE AND STORAGE

PDF Publication Title:

CARBON DIOXIDE CAPTURE AND STORAGE ( carbon-dioxide-capture-and-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 247

Chapter 5: Underground geological storage 235 In addition to essential elements of a monitoring strategy, other parameters can be used to optimize storage projects, deal with unintended leakage and address regulatory, legal and social issues. Other important purposes for monitoring include assessing the integrity of plugged or abandoned wells, calibrating and confirming performance assessment models (including ‘history matching’), establishing baseline parameters for the storage site to ensure that CO2-induced changes are recognized (Wilson and Monea, 2005), detecting microseismicity associated with a storage project, measuring surface fluxes of CO2 and designing and monitoring remediation activities (Benson et al., 2004). on most injection wells through orifices in the surface piping near the wellhead. Downhole pressure measurements are routine, but are used for injection well testing or under special circumstances in which surface measurements do not provide reliable information about the downhole pressure. A wide variety of pressure sensors are available and suitable for monitoring pressures at the wellhead or in the formation. Continuous data are available and typically transmitted to a central control room. Surface pressure gauges are often connected to shut-off valves that will stop or curtail injection if the pressure exceeds a predetermined safe threshold or if there is a drop in pressure as a result of a leak. In effect, surface pressures can be used to ensure that downhole pressures do not exceed the threshold of reservoir fracture pressure. A relatively recent innovation, fibre-optic pressure and temperature sensors, is commercially available. Fibre-optic cables are lowered into the wells, connected to sensors and provide real-time formation pressure and temperature measurements. These new systems are expected to provide more reliable measurements and well control. Before monitoring of subsurface storage can take place effectively, a baseline survey must be taken. This survey provides the point of comparison for subsequent surveys. This is particularly true of seismic and other remote-sensing technologies, where the identification of saturation of fluids with CO2 is based on comparative analysis. Baseline monitoring is also a prerequisite for geochemical monitoring, where anomalies are identified relative to background concentrations. Additionally, establishing a baseline of CO2 fluxes resulting from ecosystem cycling of CO2, both on diurnal and annual cycles, are useful for distinguishing natural fluxes from potential storage-related releases. The current state of the technology is more than adequate to meet the needs for monitoring injection rates, wellhead and formation pressures. Combined with temperature measurements, the collected data will provide information on the state of the CO2 (supercritical, liquid or gas) and accurate measurement of the amount of CO2 injected for inventories, reporting and verification, as well as input to modelling. In the case of the Weyburn project, for example, the gas stream is also analyzed to determine the impurities in the CO2, thus allowing computation of the volume of CO2 injected. Much of the monitoring technology described below was developed for application in the oil and gas industry. Most of these techniques can be applied to monitoring storage projects in all types of geological formations, although much remains to be learned about monitoring coal formations. Monitoring experience from natural gas storage in saline aquifers can also provide a useful industrial analogue. 5.6.2 Technologies for monitoring injection rates and pressures Measurements of CO2 injection rates are a common oil field practice and instruments for this purpose are available commercially. Measurements are made by gauges either at the injection wellhead or near distribution manifolds. Typical systems use orifice meters or other devices that relate the pressure drop across the device to the flow rate. The accuracy of the measurements depends on a number of factors that have been described in general by Morrow et al. (2003) and specifically for CO2 by Wright and Majek (1998). For CO2, accurate estimation of the density is most important for improving measurement accuracy. Small changes in temperature, pressure and composition can have large effects on density. Wright and Majek (1998) developed an oil field CO2 flow rate system by combining pressure, temperature and differential pressure measurements with gas chromatography. The improved system had an accuracy of 0.6%, compared to 8% for the conventional system. Standards for measurement accuracy vary and are usually established by governments or industrial associations. For example, in the United States, current auditing practices for CO2-EOR accept flow meter precision of ±4%. 5.6.3 Technologies for monitoring subsurface distribution of CO2 A number of techniques can be used to monitor the distribution and migration of CO2 in the subsurface. Table 5.4 summarizes these techniques and how they can be applied to CO2 storage projects. The applicability and sensitivity of these techniques are somewhat site-specific. Detailed descriptions, including limitations and resolution, are provided in Sections 5.6.3.1 and 5.6.3.2. Direct techniques for monitoring are limited in availability at present. During CO2 injection for EOR, the injected CO2 spreads through the reservoir in a heterogeneous manner, because of permeability variations in the reservoir (Moberg et al., 2003). In the case of CO2-EOR, once the CO2 reaches a production well, its produced volume can be readily determined. In the case of Weyburn, the carbon in the injected CO2 has a different isotopic composition from the carbon in the reservoir (Emberley et al., 2002), so the distribution of the CO2 can be determined on a gross basis by evaluating the arrival of the introduced CO2 at different production wells. With multiple injection wells in any producing area, the arrival of CO2 can give only a general indication of distribution in the reservoir. Measurements of injection pressure at the surface and in the formation are also routine. Pressure gauges are installed 5.6.3.1 Direct techniques for monitoring CO2 migration

PDF Image | CARBON DIOXIDE CAPTURE AND STORAGE

carbon-dioxide-capture-and-storage-247

PDF Search Title:

CARBON DIOXIDE CAPTURE AND STORAGE

Original File Name Searched:

srccs_wholereport.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP