PDF Publication Title:
Text from PDF Page: 262
250 IPCC Special Report on Carbon dioxide Capture and Storage individual seismic events associated with deep-well injection have been recorded suggests that the risks are low. Perhaps more importantly, these experiences demonstrate that the regulatory limits imposed on injection pressures are sufficient to avoid significant injection-induced seismicity. Designing CO2 storage projects to operate within these parameters should be possible. Nevertheless, because formation pressures in CO2 storage formations may exceed those found in CO2-EOR projects, more experience with industrial-scale CO2 storage projects will be needed to fully assess risks of microseismicity. 5.7.4.5 Implications of gas impurity Under some circumstances, H2S, SO2, NO2 and other trace gases may be stored along with CO2 (Bryant and Lake, 2005; Knauss et al., 2005) and this may affect the level of risk. For example, H2S is considerably more toxic than CO2 and well blow-outs containing H2S may present higher risks than well blow-outs from storage sites that contain only CO2. Similarly, dissolution of SO2 in groundwater creates a far stronger acid than does dissolution of CO2; hence, the mobilization of metals in groundwater and soils may be higher, leading to greater risk of exposure to hazardous levels of trace metals. While there has not been a systematic and comprehensive assessment of how these additional constituents would affect the risks associated with CO2 storage, it is worth noting that at Weyburn, one of the most carefully monitored CO2 injection projects and one for which a considerable effort has been devoted to risk assessment, the injected gas contains approximately 2% H2S (Wilson and Monea, 2005). To date, most risk assessment studies have assumed that only CO2 is stored; therefore, insufficient information is available to assess the risks associated with gas impurities at the present time. 5.7.5 Risk assessment methodology Risk assessment methodologies are diverse; new methodologies arise in response to new classes of problems. Because analysis of the risks posed by geological storage of CO2 is a new field, no well-established methodology for assessing such risks exists. Methods dealing with the long-term risks posed by the transport of materials through the subsurface have been developed in the area of hazardous and nuclear waste management (Hodgkinson and Sumerling, 1990; North, 1999). These techniques provide a useful basis for assessing the risks of CO2 storage. Their applicability may be limited, however, because the focus of these techniques has been on assessing the low-volume disposal of hazardous materials, whereas the geological storage of CO2 is high-volume disposal of a material that involves comparatively mild hazards. Risk assessment aims to identify and quantify potential risks caused by the subsurface injection of CO2, where risk denotes a combination (often the product) of the probability of an event happening and the consequences of the event. Risk assessment should be an integral element of risk-management activities, spanning site selection, site characterization, storage system design, monitoring and, if necessary, remediation. The development of a comprehensive catalogue of the risks and of the mechanisms that underlie them, provides a good foundation for systematic risk assessment. Many of the ongoing risk assessment efforts are now cooperating to identify, classify and screen all factors that may influence the safety of storage facilities, by using the features, events and processes (FEP) methodology. In this context, features includes a list of parameters, such as storage reservoir permeability, caprock thickness and number of injection wells. Events includes processes such as seismic events, well blow-outs and penetration of the storage site by new wells. Processes refers to the physical and chemical processes, such as multiphase flow, chemical reactions and geomechanical stress changes that influence storage capacity and security. FEP databases tie information on individual FEPs to relevant literature and allow classification with respect to likelihood, spatial scale, time scale and so on. However, there are alternative approaches. The operation of a CO2 storage facility will necessarily involve risks arising from the operation of surface facilities such as pipelines, compressors and wellheads. The assessment of such risks is routine practice in the oil and gas industry and available assessment methods like hazard and operability and quantitative risk assessment are directly applicable. Assessment of such risks can be made with considerable confidence, because estimates of failure probabilities and the consequences of failure can be based directly on experience. Techniques used for assessment of operational risks will not, in general, be readily applicable to assessment of risks arising from long-term storage of CO2 underground. However, they are applicable to the operating phase of a storage project. The remainder of this subsection addresses the long-term risks. Most risk assessments involve the use of scenarios that describe possible future states of the storage facility and events that result in leakage of CO2 or other risks. Each scenario may be considered as an assemblage of selected FEPs. Some risk assessments define a reference scenario that represents the most probable evolution of the system. Variant scenarios are then constructed with alternative FEPs. Various methods are used to structure and rationalize the process of scenario definition in an attempt to reduce the role of subjective judgements in determining the outcomes. Several substantial efforts are under way to assess the risks posed by particular storage sites (Gale, 2003). These risk assessment activities cover a wide range of reservoirs, use a diversity of methods and consider a very wide class of risks. The description of a representative selection of these risk assessment efforts is summarized in Table 5.6. Scenarios are the starting points for selecting and developing mathematical-physical models (Section 5.4.2). Such performance assessment models may include representations of all relevant components including the stored CO2, the reservoir, the seal, the overburden, the soil and the atmosphere. Many of the fluid- transport models used for risk assessment are derived from (or identical to) well-established models used in the oil and gas or groundwater management industries (Section 5.4.2). The detail or resolution of various components may vary greatly. SomePDF Image | CARBON DIOXIDE CAPTURE AND STORAGE
PDF Search Title:
CARBON DIOXIDE CAPTURE AND STORAGEOriginal File Name Searched:
srccs_wholereport.pdfDIY PDF Search: Google It | Yahoo | Bing
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info
Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info
Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info
NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info
Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |